
Debug Tool for z/OS

Coverage Utility User's Guide and Messages
Version 13.1

SC27-4651-03

���

Debug Tool for z/OS

Coverage Utility User's Guide and Messages
Version 13.1

SC27-4651-03

���

Note!
Before using this information and the product it supports, be sure to read the general information under “Notices” on page
231.

Fourth Edition (December 2014)

This edition applies to Debug Tool for z/OS, Version 13.1 (Program Number 5655-Q10 with the PTF for APAR
PI29800), which supports the following compilers:
v AD/Cycle C/370™ Version 1 Release 2 (Program Number 5688-216)

v C/C++ for MVS/ESA Version 3 (Program Number 5655-121)

v C/C++ feature of OS/390 (Program Number 5647-A01)

v C/C++ feature of z/OS Version 1 (Program Number 5694-A01)

v C/C++ feature of z/OS Version 2 (Program Number 5650-ZOS)

v OS/VS COBOL, Version 1 Release 2.4 (5740-CB1) - with limitations

v VS COBOL II Version 1 Release 3 and Version 1 Release 4 (Program Numbers 5668-958, 5688-023) - with
limitations

v COBOL/370 Version 1 Release 1 (Program Number 5688-197)

v COBOL for MVS & VM Version 1 Release 2 (Program Number 5688-197)

v COBOL for OS/390 & VM Version 2 (Program Number 5648-A25)

v Enterprise COBOL for z/OS and OS/390 Version 3 (Program Number 5655-G53)

v Enterprise COBOL for z/OS Version 4 (Program Number 5655-S71)

v Enterprise COBOL for z/OS Version 5 Release 1 (Program Number 5655-W32)

v High Level Assembler for MVS & VM & VSE Version 1 Release 4, Version 1 Release 5, Version 1 Release 6
(Program Number 5696-234)

v OS PL/I Version 2 Release 1, Version 2 Release 2, Version 2 Release 3 (Program Numbers 5668-909, 5668-910) -
with limitations

v PL/I for MVS & VM Version 1 Release 1 (Program Number 5688-235)

v VisualAge PL/I for OS/390 Version 2 Release 2 (Program Number 5655-B22)

v Enterprise PL/I for z/OS and OS/390 Version 3 (Program Number 5655-H31)

v Enterprise PL/I for z/OS Version 4.4 and earlier (Program Number 5655-W67)

This edition also applies to all subsequent releases and modifications until otherwise indicated in new editions or
technical newsletters.

You can access publications online at www.ibm.com/e-business/linkweb/publications/servlet/pbi.wss

You can find out more about Debug Tool by visiting the IBM Web site for Debug Tool at: www.ibm.com/software/
products/us/en/debugtool

© Copyright IBM Corporation 1992, 2014.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

|

Contents

About this document vii
Who might use this document vii
Accessing z/OS licensed documents on the Internet vii
How this document is organized vii
How to read syntax diagrams viii

Symbols viii
Syntax items. viii
Syntax examples ix

How to send your comments x

Summary of changes. xi

Part 1. Overview of Debug Tool
Coverage Utility 1

Chapter 1. Introduction to Debug Tool
Coverage Utility 3
Monitoring coverage: an overview 3

Setup 4
Execution 5
Report 5

Supported compilers and assemblers 6
Requirements 6
Where you can find more information 7

Chapter 2. Getting started 9
Starting the Coverage Utility ISPF dialog 9
Modifying your Coverage Utility defaults 9

Editing your user defaults 10
Resetting your user defaults to the site defaults 13

Part 2. Learning to use Coverage
Utility 15

Chapter 3. Learning to use the product 17
Using the supplied samples 17

Running the samples 17
Allocating sample data sets 19

Preparing to produce a sample report 19
Compiling the sample 20
Editing the sample control file 21
Producing a sample summary 22
Creating sample setup JCL 22
Creating sample JCL to start a monitor session 23

Creating JCL for a sample summary report 23
Editing sample JCL to link and run 24
Running the summary sample JCL 24
Example: Summary report for COB01. 24
Example: Summary report for COB01 (Enterprise
COBOL for z/OS Version 5) 25
Example: Summary report for PLI01 26
Example: Summary report for C01. 27
Example: Summary report for ASM01 28

Producing a sample annotated listing report . . . 29
Creating JCL for an annotated listing report . . 30
Running the annotated sample JCL 30
Example: COBOL annotated listing report . . . 31
Example: PL/I annotated listing report 33
Example: C/C++ annotated listing report . . . 34
Example: Assembler annotated listing report . . 35

Chapter 4. Samples that are provided
with Coverage Utility. 39
User data sets that are required to run the samples 39
COBOL samples 40
PL/I samples 41
C/C++ samples 42
Assembler samples 42

Part 3. Preparing to monitor a
program 43

Chapter 5. Describing the compile units
to be analyzed 45
Editing a control file 45
Contents of the control file 46
Syntax of control file statements 47

INCLUDE statement 48
DEFAULTS statement 48
COBOL statement (compilation unit definition) 49
PL/I statement (compilation unit definition) . . 51
C statement (compilation unit definition) . . . 53
ASM statement (compilation unit definition) . . 54

Examples: Control files 56
Example: Control file for a single compilation
unit 56
Example: Control file for multiple compilation
units. 56
Example: Control file for load module 56

Chapter 6. Preparing to monitor a
program 57
Supplying setup input 57

Setup processing 58
Restrictions on setup input 58

Instrumenting object modules or load modules . . 59
Creating the setup JCL by using the panels 60
Determining when to create or submit setup JCL . . 61
Compiler options required by Coverage Utility . . 61

COBOL compiler options required by Coverage
Utility 61
PL/I compiler options required by Coverage
Utility 62
C/C++ compiler options required by Coverage
Utility 63
Assembler options required by Coverage Utility 64

Compiler restrictions imposed by Coverage Utility 64

© Copyright IBM Corp. 1992, 2014 iii

COBOL compiler restrictions imposed by
Coverage Utility 65
PL/I compiler restrictions imposed by Coverage
Utility 65
C/C++ compiler restrictions imposed by
Coverage Utility 66
Assembler restrictions imposed by Coverage
Utility 66

Setup JCL for the compile job stream 66
Parameters for the setup programs 66

EQACUSET 67
EQACUZPT 69
EQACUZPL 69
EQACUZPP 69

Part 4. Running a Coverage Utility
monitor session 71

Chapter 7. Monitoring a program . . . 73
Creating the start monitor JCL by using the panels 73
Parameters for the monitor 75
Running multiple user sessions 76

Changing and using IDs 76
Coverage of common modules with multiple
user sessions 76

Using performance mode to reduce monitor
overhead 78
Monitoring a program that is executing under
control of the Debug Tool debugger 79
Restrictions on monitoring programs 79

Restrictions on programs that reside in read-only
storage 80
Restrictions on system modes 80

Chapter 8. Monitor commands 81
Issuing commands 81
EQACUOBP (Display breakpoint status). 82
EQACUOID (Add ID) 85
EQACUOPF (Performance mode off) 86
EQACUOPN (Performance mode on). 87
EQACUOQT (Quit). 88
EQACUORE (Reset) 89
EQACUOSA (Display statistics). 90
EQACUOSE (Display sessions) 92
EQACUOSL (Display listings) 94
EQACUOSN (Snapshot) 96
EQACUOSP (Stop) 97

Part 5. Obtaining Coverage Utility
reports. 101

Chapter 9. Creating reports 103
Creating summary report JCL by using the panels 103
Creating annotated listing report JCL by using the
panels 105
Creating export JCL by using the panels 107

Chapter 10. Summary report 109
Sections of the summary report 109

PROGRAM AREA DATA section 110
UNEXECUTED CODE section 110
BRANCHES THAT HAVE NOT GONE BOTH
WAYS section 111

Example: COBOL summary report 111
Example: COBOL summary report (Enterprise
COBOL for z/OS Version 5) 113
Example: PL/I summary report 114
Example: C summary report 115
Example: Assembler summary report 116
Suppression of conditional branch coverage with
performance mode 117

Example: Summary report with performance
mode enabled during setup 118

Chapter 11. Annotated listing report 121
Selecting specific listings to annotate 121
Reducing the size of an annotated listing report 122
Changes in annotation symbols with performance
mode 123
Displaying execution counts in an annotated listing
report 124
Example: COBOL annotated listing report 125
Example: PL/I annotated listing report 126
Example: C annotated listing report 127
Example: Assembler annotated listing report . . . 128

Chapter 12. Report differences for
optimized C/C++ code. 131
The effects of code motion 131
The effects of dead code elimination. 131
The effects of statement decomposition 132
The effects of inlining 132

Summary report with inline code. 133
Annotated listing report with inline code . . . 134

Chapter 13. Report program
parameters 135
Parameters for the summary and report programs 135

Summary program parameters 135
Report program parameters 135

Parameters for the export data program 136

Chapter 14. HTML reports 139
HTML Annotated Listing Report 139

Creating an HTML Annotated Listing Report by
using the panel interface 139
Creating an HTML Annotated Listing Report by
using the command interface 140
Restrictions on creating an HTML Annotated
Listing Report 141
Format of the HTML Annotated Listing Report 141

HTML Targeted Coverage Report. 142
Specifying the COBOL Program-ID 143
Creating an HTML Targeted Coverage Report
by using the panel interface 146

iv Debug Tool V13.1 Coverage Utility User's Guide and Messages

Creating an HTML Targeted Coverage Report
by using the panel interface, Program-ID
selection 147
Creating an HTML Targeted Coverage Report
by using the command interface 148
Restrictions on creating an HTML Targeted
Coverage Report 149
Format of the HTML Targeted Coverage Report 150

Part 6. Dealing with special
situations 153

Chapter 15. Using Coverage Utility in
a project environment. 155
Creating Coverage Utility files during code
development 155

For the coder 156
For the tester 156

Combining test case coverage results 157
Creating the combine JCL by using the panels 158
Rules for combining results. 160

Measuring coverage for individual test cases . . . 160

Chapter 16. Diagnosing monitor
problems 161
Solving system 047 abend 161
Solving system 7C1 abend in a user program. . . 161
Solving protection exception 0C4 (reason code 4) in
a user program 162
Solving system 0F8 abend in a user program . . . 162
Solving system Fnn abend in a user program. . . 162
Solving lack of ECSA space. 163
Solving poor performance when measuring
conditional branch coverage 163

Part 7. Appendixes 165

Appendix A. Messages 167

Appendix B. Resources and
requirements 189
Coverage Utility resources 189

Setup resources. 189
Monitor CSA, ESQA, and ECSA usage 189
Report programs 190

Coverage Utility requirements 190
DDNAME requirements 190
Data set attributes 191

Appendix C. DBCS support 193
DBCS requirements for Coverage Utility compilers
and assemblers 193
DBCS support with Coverage Utility 193

Appendix D. FastPath 195
Creating quick start JCL from the panels 195

Quick start parameters 197
Creating snapshot summary JCL from the panels 200
Creating quick stop JCL from the panels 202

Quick stop parameters 203

Appendix E. Parameters that are
common to multiple routines 205
LINECOUNT 206
LOCALE 206
NATLANG 208
Example: Common parameters 208

Appendix F. Exported XML data . . . 209
XML file description 209

Statement or line numbers 214
Execution of statements with breakpoints . . . 214
XML output for in-lined routines 214
Optional sections 215

XML DTD 215
Example: Exported XML file 217

Appendix G. Support resources and
problem solving information 221
Searching knowledge bases. 221

Searching the information center 221
Searching product support documents 221

Getting fixes. 223
Subscribing to support updates 223

RSS feeds and social media subscriptions . . . 223
My Notifications 223

Contacting IBM Support. 224
Define the problem and determine the severity
of the problem 225
Gather diagnostic information 226
Submit the problem to IBM Support. 226

Appendix H. Accessibility 229
Using assistive technologies 229
Keyboard navigation of the user interface 229
Accessibility of this document 229

Notices 231
Copyright license 232
Programming interface information 232
Trademarks and service marks 232

Glossary 233

Bibliography. 237
Debug tool publications 237
High level language publications 237
Related publications 239
Softcopy publications. 240

Index 241

Contents v

vi Debug Tool V13.1 Coverage Utility User's Guide and Messages

About this document

This document contains information about the code-coverage utility. The
code-coverage utility measures code coverage for programs written in COBOL,
PL/I, C/C++, and assembler. This document describes how to set up programs for
analysis, how to prepare to monitor a program, the monitor commands, and the
reports that you can obtain. It also contains the messages for the code-coverage
utility.

Who might use this document
This document is intended for application programmers who use the
code-coverage utility to monitor the code coverage of application that are
wrwrittenn high-level languages (HLLs) and assembler. Throughout this document,
HLLs are referred to as C and C++, COBOL, and PL/I.

To use this document and determine code coverage for a program that is written in
one of the supported languages, you need to know how to compile and run such a
program.

Accessing z/OS licensed documents on the Internet
z/OS® licensed documentation is available on the Internet in PDF format at the
IBM® Resource Link® Web site at:
http://www.ibm.com/servers/resourcelink

Licensed documents are available only to customers with a z/OS license. Access to
these documents requires an IBM Resource Link user ID and password, and a key
code. With your z/OS order you received a Memo to Licensees, (GI10-8928), that
includes this key code.

To obtain your IBM Resource Link user ID and password, log on to:
http://www.ibm.com/servers/resourcelink

To register for access to the z/OS licensed documents:
1. Sign in to Resource Link using your Resource Link user ID and password.
2. Select User Profiles located on the left-hand navigation bar.

Note: You cannot access the z/OS licensed documents unless you have registered
for access to them and received an e-mail confirmation informing you that your
request has been processed.

Printed licensed documents are not available from IBM.

You can use the PDF format on either z/OS Licensed Product Library CD-ROM or
IBM Resource Link to print licensed documents.

How this document is organized
This document is divided into areas of similar information for easy retrieval of
appropriate information. The following list describes how the information is
grouped:

© Copyright IBM Corp. 1992, 2014 vii

http://www.ibm.com/servers/resourcelink
http://www.ibm.com/servers/resourcelink

v Part 1 gives an overview of the Coverage Utility and describes how to start
using it.

v Part 2 steps you through the procedures for the utility by using supplied
samples and is provided as a means to learn the tool.

v Part 3 describes the control file that you use to control the programs to be
analyzed and monitored and how to modify the file to prepare to monitor a
program.

v Part 4 describes how to monitor a program and provides the monitor
commands.

v Part 5 describes all the reports that can be produced and how to obtain them.
v Part 6 describes how to deal with special situations, in particular using the

Coverage Utility for large projects, incorporating the monitoring of programs
into product procedures, and diagnosing monitor problems.

v Part 7 provides reference material: messages, requirements for data sets and
resources, DBCS support, the FastPath function, common parameters for
routines, and a description oft he XML that is exported.

The last several topics list notices, bibliography, and glossary of terms.

How to read syntax diagrams
This section describes how to read syntax diagrams. It defines syntax diagram
symbols, items that may be contained within the diagrams (keywords, variables,
delimiters, operators, fragment references, operands) and provides syntax examples
that contain these items.

Syntax diagrams pictorially display the order and parts (options and arguments)
that comprise a command statement. They are read from left to right and from top
to bottom, following the main path of the horizontal line.

Symbols
The following symbols may be displayed in syntax diagrams:

Symbol
Definition

��─── Indicates the beginning of the syntax diagram.

───� Indicates that the syntax diagram is continued to the next line.

�─── Indicates that the syntax is continued from the previous line.

───�� Indicates the end of the syntax diagram.

Syntax items
Syntax diagrams contain many different items. Syntax items include:
v Keywords - a command name or any other literal information.
v Variables - variables are italicized, appear in lowercase and represent the name

of values you can supply.
v Delimiters - delimiters indicate the start or end of keywords, variables, or

operators. For example, a left parenthesis is a delimiter.
v Operators - operators include add (+), subtract (-), multiply (*), divide (/), equal

(=), and other mathematical operations that may need to be performed.
v Fragment references - a part of a syntax diagram, separated from the diagram to

show greater detail.

viii Debug Tool V13.1 Coverage Utility User's Guide and Messages

v Separators - a separator separates keywords, variables or operators. For example,
a comma (,) is a separator.

Keywords, variables, and operators may be displayed as required, optional, or
default. Fragments, separators, and delimiters may be displayed as required or
optional.

Item type Definition
Required Required items are displayed on the main path of the horizontal line.
Optional Optional items are displayed below the main path of the horizontal line.
Default Default items are displayed above the main path of the horizontal line.

Syntax examples
The following table provides syntax examples.

Table 1. Syntax examples

Item Syntax example

Required item.

Required items appear on the main path of the horizontal
line. You must specify these items.

�� KEYWORD required_item ��

Required choice.

A required choice (two or more items) appears in a
vertical stack on the main path of the horizontal line. You
must choose one of the items in the stack.

�� KEYWORD required_choice1
required_choice2

��

Optional item.

Optional items appear below the main path of the
horizontal line.

�� KEYWORD
optional_item

��

Optional choice.

An optional choice (two or more items) appears in a
vertical stack below the main path of the horizontal line.
You may choose one of the items in the stack.

�� KEYWORD
optional_choice1
optional_choice2

��

Default.

Default items appear above the main path of the
horizontal line. The remaining items (required or
optional) appear on (required) or below (optional) the
main path of the horizontal line. The following example
displays a default with optional items.

��
default_choice1

KEYWORD
optional_choice2
optional_choice3

��

Variable.

Variables appear in lowercase italics. They represent
names or values.

�� KEYWORD variable ��

About this document ix

Table 1. Syntax examples (continued)

Item Syntax example

Repeatable item.

An arrow returning to the left above the main path of the
horizontal line indicates an item that can be repeated.

A character within the arrow means you must separate
repeated items with that character.

An arrow returning to the left above a group of
repeatable items indicates that one of the items can be
selected, or a single item can be repeated.

�� �KEYWORD repeatable_item ��

�� �

,

KEYWORD repeatable_item ��

Fragment.

The -| fragment |- symbol indicates that a labelled group
is described below the main syntax diagram. Syntax is
occasionally broken into fragments if the inclusion of the
fragment would overly complicate the main syntax
diagram.

�� KEYWORD fragment ��

fragment:

, required_choice1
, default_choice

, required_choice2
, optional_choice

How to send your comments
Your feedback is important in helping us to provide accurate, high-quality
information. If you have comments about this document or any other Debug Tool
documentation, contact us in one of these ways:
v Use the Online Readers' Comment Form at www.ibm.com/software/awdtools/

rcf/. Be sure to include the name of the document, the publication number of
the document, the version of Debug Tool, and, if applicable, the specific location
(for example, page number) of the text that you are commenting on.

v Send your comments by email to comments@us.ibm.com. Be sure to include the
name of the book, the part number of the book, the version of Debug Tool, and,
if applicable, the specific location of the text you are commenting on (for
example, a page number or table number).

When you send information to IBM, you grant IBM a nonexclusive right to use or
distribute the information in any way it believes appropriate without incurring any
obligation to you.

x Debug Tool V13.1 Coverage Utility User's Guide and Messages

Summary of changes

Changes introduced with the PTF for APAR PI29800
v Support is added for debugging subtasks initiated by the ATTACH assembler

macro. Multiple subtasks might be debugged concurrently, as well as the parent
task.

v Delay debug mode is enhanced to support non-LE programs in certain
circumstances.

Changes introduced with the PTF for APAR PI24559
v Delay debug mode is enhanced to include C functions. In addition, a load

module name can now be paired with a program name or C function in the
delay debug data set.

v Terminal Interface Manager now allows the same user to log on multiple times
on separate terminals. This allows multiple tasks to be debugged by the same
user ID simultaneously.

v Support is added for Automonitor for C/C++.
v M/L prefix commands are enhanced to support these prefix commands for

C/C++.
v The CICS DTST transaction that is used to display, scan and modify CICS

storage is enhanced to support 64 bit addresses.
v Code Coverage support is added for Enterprise COBOL for z/OS Version 5.
v CALL %FA command is enhanced to support remote debug mode.
v AT GLOBAL LABEL, AT LABEL, CLEAR AT GLOBAL LABEL, CLEAR AT LABEL, LIST AT

GLOBAL LABEL, LIST AT LABEL and LIST NAMES LABEL commands are enhanced to
support remote debug mode.

Changes introduced with the PTF for APAR PI16543
v Support is added for CICS TS 5.2.
v The DTCN Remote Plug-in is enhanced to support the use of SYSID (the

SYSIDNT of a region in a CICSPLEX environment) to select CICS tasks to
debug.

v The DTCN Remote Plug-in is enhanced to support additional CICS
"Application" resource types that are introduced in CICS TS 5.2.
You can use these new resource types to select a program to debug:
– Platform
– Application
– Operation
– Version

v Code Coverage support for interactive remote.
v Code Coverage support for z/OS XL C.
v SET LIST BY SUBSCRIPT ON support for COBOL for MFI. This includes

QUERY LIST BY SUBSCRIPT support.
v The CLIENTID option is added to the EQAOPTS DLAYDBGXRF command. This

option allows a remote Debug Tool user using the enhanced DTSP Plug-in to
identify a specific DB/2 client ID, and to only trap DB/2 stored procedures
executed using that client ID.

© Copyright IBM Corp. 1992, 2014 xi

|

|
|
|

|
|

|

|
|
|

|
|
|

|

|
|

|
|

|

|

|
|
|

Changes introduced with the PTF for APAR PI06312
v The REPOSITORY option is added to the EQAOPTS DLAYDBGXRF command.

This option instructs Debug Tool to communicate with the Terminal Interface
Manager to determine whether a user requests to debug an IMS transaction or
DB/2 stored procedure associated with a generic user ID. This is an alternative
to using the cross reference table data set.

v The Swap IMS Transaction Class and Run Transaction utility is enhanced to
allow the user to manipulate the TEST option that is used for the debug
message region. This allows the user to supply commands or preference files,
and to direct the Debug Tool session to the remote user interface or to an
alternate Terminal Interface Manager user ID.

v For CICS, provide protection of storage that was GETMAINed in the current
task by a program that is not the active program. This support is enabled via
INITPARM=(EQA0CPLT='STG') in the CICS startup parameters and is only
available during a remote debug session.

v <PROGRAMDSCOMPILEDATE> and <PROGRAMDSCOMPILETIME> tags are
added to the XML tags for code coverage. These two tags specify the compile
data and time of the program source that is contained in the program data set.

v Support is added for generating a client certificate to the remote debugger if it
does not exist.

v A note is added to the Coverage Utility User's Guide and Messages about the
accuracy of execution counts (frequency counts) for single statement Program
Areas (PAs).

Changes introduced with Debug Tool for z/OS Version 13.1
v A method for gathering code coverage is added for the generation, viewing, and

reporting of code coverage by using the Debug Tool mainframe interface (MFI)
as the engine. This support is provided for applications written in Enterprise
COBOL and Enterprise PL/I that are compiled with the TEST compiler option
and its suboption SEPARATE. This is enabled via the new EQAOPTS
CCPROGSELECTDSN, CCOUTPUTDSN, and CCOUTPUTDSNALLOC
commands.

v Debug Tool is enhanced to provide the automatic start of IMS™ message
processing program (MPP) regions and dynamic routing of transactions. This
allows a developer to dynamically start an MPP region, route a transaction to
that MPP region, and at the end of the transaction shutdown the MPP region
created for the developer thus reducing system resources.

v To help with the ease of use of the MFI mode of Debug Tool for some users, an
option is added that enables breakpoints, the current line, and the line with
found text to be identified by a character indicator. This feature is enabled via a
new EQAOPTS ALTDISP command.

v Debug Tool is enhanced to support the following languages and platforms:
– Enterprise COBOL for z/OS V5.1
– Enterprise PL/I for z/OS V4.4
– CICS® TS V5.1
– DB2® V11
– IMS V13
– z/OS, V2.1
– C/C++ V2.1

xii Debug Tool V13.1 Coverage Utility User's Guide and Messages

v Debug Tool is enhanced to support JCL for Batch Debugging in the DTSP
plug-in. This facility is used to instrument JCL to initiate a debug session from
the DTSP plug-in.

v Support is added for an IMS transaction that is associated with a generic ID. A
new feature is added to the consolidated Language Environment® user exit
(EQAD3CXT) to search a new cross-reference table for the user ID of a user who
wants to debug a IMS transaction that is started from the web and is associated
with a generic ID. This enables Debug Tool to debug these transactions that use
a generic ID. The user ID from the cross-reference table is used to find the user's
Debug Tool user exit data set (userid.DBGTOOL.EQAUOPTS), which specifies
the TEST runtime parameters and the display device address. An option is
added to the Debug Tool Utilities ISPF panel, "C IMS Transaction and User ID
Cross Reference Table", to allow each user to update the new cross reference
table.

v Support is added for tracing load modules loaded by an application. Commands
TRACE LOAD and LIST TRACE LOAD are added for Debug Tool's MFI mode.
This set of commands allows the user to get a trace of load modules loaded by
the application. Start the trace by issuing TRACE LOAD START. Use LIST
TRACE LOAD to display the trace. The trace includes load modules known to
Debug Tool at the time the TRACE LOAD START command is entered and all
that are loaded while the trace is active. End the trace by issuing TRACE LOAD
END. Note that when the trace is ended, all trace information is deleted.

v Support is added for terminating an idle Debug Tool session that uses the
Terminal Interface Manager. Debug Tool supports a timeout option via the
EQAOPTS SESSIONTIMEOUT command. This command allows the system
programmer to establish a maximum wait time for debug sessions that use a
dedicated terminal or the Terminal Interface Manager. If the debug session
exceeds the specified time limit without any user interaction, the session will be
terminated with either a QUIT or QUIT DEBUG.

v Debug Tool Coverage Utility "Create HTML Targeted Coverage Report" is
enhanced to allow the user to select from a list of COBOL Program-IDs, ignore
changes to non-executable code, and produce a summary of the targeted lines
with selectable HTML links.

v Adds IMS information to start and stop messages generated by the EQAOPTS
STARTSTOPMSG command.

v Adds EQAOPTS STARTSTOPMSGDSN command and a Debug Tool Utilities
option "Non-CICS Debug Session Start and Stop Message Viewer" to collect and
view Debug Tool debugger session start and stop information.

v Delay debug mode is enhanced with an EQAOPTS DLAYDBGCND command to
control CONDITION trapping. In addition, an EQAOPTS DLAYDBGXRF
command is added so that delay debug mode can use the "IMS Transaction and
User ID Cross Reference Table". Further, NOTEST is now handled in delay
debug mode.

v A confirmation message is added to Debug Tool Utilities Option 6 "Debug Tool
User Exit Data Set" to indicate that the updates have been saved into the
EQAUOPTS data set.

v The ON and AT OCCURRENCE commands are enhanced for Enterprise PL/I to
support qualifying data.

v LIST LDD and CLEAR LDD commands are added to display and remove LDD
commands known to Debug Tool. LIST CC, CC START, and CC STOP
commands are added to gather and display code coverage data.

v Two EQAOPTS commands are added for remote debug mode. The EQAOPTS
HOSTPORTS command specifies the specific host port number or range of host

Summary of changes xiii

port numbers on the host for a TCP/IP connection from the host to a
workstation. The EQAOPTS TCPIPDATADSN command provides the data set
name for TCPIP.DATA via the SYSTCPD DD NAME when no
GLOBALTCPIPDATA statement is configured.

v A timestamp is added to the EQAY999* messages that the Terminal Interface
Manager issues if the +T trace flag is on.

v Debug Tool is enhanced to allow for using GOTO or JUMPTO command for
programs that are compiled with OPT and NOEJPD suboptions of the Enterprise
COBOL TEST compile option when SET WARNING setting is OFF.

v An updated DTST transaction is included to write messages to the operator log
when a user changes storage. These messages are intended to provide an audit
trail of DTST storage changes.

v Support is added for remote Playback through the Playback Toolbar in the
Debug View.

v The EQALANGP and EQALANGX modules are moved from Debug Tool's
EQAW.SEQAMOD library to Common Component's IPV.SIPVMODA library.
They are now aliases of IPVLANGP and IPVLANGX respectively. This removes
duplication between the two tools.

v Appendix "Quick start guide for compiling and assembling programs for use
with IBM Problem Determination Tools products" in the Debug Tool User's Guide
is removed because this has been placed in the IBM Problem Determination Tools
for z/OS Common Component: Customization Guide and User Guide instead.

xiv Debug Tool V13.1 Coverage Utility User's Guide and Messages

Part 1. Overview of Debug Tool Coverage Utility

This information introduces you to Debug Tool Coverage Utility: what the tool
provides, what it requires, and how you can use it to measures code coverage in
your application testing. In this part you can learn the basics of running Coverage
Utility from setup to generating reports. New users are encouraged to read this
part to learn the basics of the tool, including how to use the ISPF dialog and
panels and to set defaults.

© Copyright IBM Corp. 1992, 2014 1

2 Debug Tool V13.1 Coverage Utility User's Guide and Messages

Chapter 1. Introduction to Debug Tool Coverage Utility

Debug Tool Coverage Utility (Coverage Utility) is a tool that measures test
coverage in application programs that have the following characteristics:
v Written in the COBOL, PL/I, C/C++, and assembler languages
v Compiled by certain IBM® COBOL, PL/I, and C/C++ compilers or assembled by

the High Level Assembler or Assembler H

Coverage Utility enables you to run application programs in a test environment
and retrieve information to determine which code statements have been executed.
This process is called measuring test case coverage.

Coverage Utility has the following advantages:
v Low overhead

For a test case coverage run, Coverage Utility typically adds very little to the
execution time of your program. Coverage Utility inserts SVC instructions into
your application object or load modules as breakpoints, and then is controlled by
MVS™ when these SVCs are executed. Most breakpoints are removed after their
first execution. The increase in test program execution time is minimal, because
of this technique.

v Panel-driven user interface
You can use an ISPF panel-driven interface to create JCL for executing Coverage
Utility programs.

This section contains the following topics:
v “Monitoring coverage: an overview”
v “Supported compilers and assemblers” on page 6
v “Requirements” on page 6
v “Where you can find more information” on page 7

Monitoring coverage: an overview
Running Coverage Utility consists of the following steps.
1. Setup — Prepare to monitor programs.

a. Compile the source code that you want to analyze, using the required
compiler options.

b. Generate Coverage Utility JCL, by using the Coverage Utility ISPF dialog:
1) Edit the Coverage Utility control file.
2) Create the setup JCL.
3) Create the start monitor JCL.
4) Create the report or summary JCL.

c. Edit the link-edit JCL to include the modified object modules that are
created when the setup JCL is run. Alternatively, you can instrument load
modules after your build process.

d. Edit the GO JCL (or program invocation) to point to the instrumented load
module that was provided in step 1c.

2. Execution — Run a monitor session.
a. Run the setup JCL (created in step 1b2).
b. Run the link-edit JCL (created in step 1c).
c. Run the JCL to start a monitor session (created in step 1b3).

© Copyright IBM Corp. 1992, 2014 3

d. Run your application using the load modules from step 2b on page 3.
e. Stop the monitor session (with the EQACUOSP command).

3. Report — Obtain Coverage Utility reports.
a. Run the report or summary JCL (created in step 1b4 on page 3).
b. Optional: Run the export utility to save the output in XML format for use

by other programs.

If you change your program and want to rerun the test cases, you must repeat step
1a on page 3 using the changed source code, and then complete steps 1b on page 3
through 3a again.

This is a flow diagram of the entire process:

Setup
Coverage Utility setup analyzes assembler statements that are included in the
compiler or assembler output listings. From this analysis, Coverage Utility
determines where to insert breakpoints in disk-resident copies of the object or load
modules that you want to examine, and then inserts them.

To run setup, you need:

User Program
listings

Load modules
or object
modules

Reports

Test
Cases

User
program

Setup

Monitor

Breakpoints
Inserted

E
xe

cu
ta

bl
e

pr
og

ra
m

s

BP found

Control returned

BRKTAB:
breakpoint file

BRKOUT
results of test run

Reports: Summary of test case coverage
Annotated Listing report

4 Debug Tool V13.1 Coverage Utility User's Guide and Messages

v Source/assembler listings of the object modules
v The object modules or load modules you want to test

The setup step produces:
v Modified test programs that contain breakpoints
v A file of breakpoint-related information (called a BRKTAB in this book) that is

required for the monitor program in the execution step

Execution
If you instrument object modules, you must link the modified object modules into
an executable load module.

To run your program under Coverage Utility, you must first start a monitor
session, and then run your test case programs. As breakpoints are encountered, the
monitor gains control, updates test case coverage statistics, and then returns
control to your program. After your test cases have completed, stop the monitor
session. The results are written to a file called BRKOUT.

Setup inserts reserved supervisor call (SVC) instructions as breakpoints. The
monitor is given control by MVS when these SVC instructions are executed in a
program.

Two SVC instructions are used, one for two-byte instructions, and one for four- or
six-byte instructions. During installation, the monitor is installed as the handler for
the two SVC instructions used as breakpoints.

Report
The Coverage Utility report programs use the results from the monitor to produce
a summary report and an annotated listing report. You can print a summary report
of overall test case coverage and an annotated listing report for each module
tested.

To run reports you need:
v The BRKTAB data set from the setup step
v The BRKOUT data set from the execution step
v Any listings that you want to annotate

For each COBOL paragraph (PROGRAM-ID for Enterprise COBOL for z/OS
Version 5); PL/I procedure, ON-unit, Begin-block; C/C++ function; or assembler
CSECT, Coverage Utility can provide you with the following information:
v The percentage of statements that have executed and a list of unexecuted

statements
v The percentage of conditional branches that have executed and a list of

conditional branches that have not executed in both directions.
v Annotated listing report that shows the execution status of each statement.

To process the monitor output by using another program, you must first export the
coverage data in a form that the program understands. You can use the export
utility to export the coverage data in an XML format.

To create this XML format output you need:
v The BRKTAB data set from the setup step
v The BRKOUT data set from the execution step

Related tasks

Chapter 1. Introduction to Coverage Utility 5

Part 5, “Obtaining Coverage Utility reports,” on page 101

Supported compilers and assemblers
Coverage Utility supports applications that are generated by the following
compilers and assemblers:
v IBM Enterprise COBOL for z/OS, Version 5.1 (5655-W32)
v IBM Enterprise COBOL for z/OS, Version 4 (5655-S71)
v IBM Enterprise COBOL for z/OS and OS/390®, Version 3 (5655-G53)
v IBM COBOL for OS/390 & VM, Version 2 (5648-A25)
v VisualAge® COBOL Millennium Language Extensions for OS/390 & VM, Version

1.0 (5648-MLE)
v IBM COBOL for MVS & VM, Version 1.2 (5688-197)
v VisualAge COBOL Millennium Language Extensions for MVS & VM, Version 1.0

(5654-MLE)
v VS COBOL II, Version 1 Release 4.0 (5668-958 , 5688-023)
v OS/VS COBOL, Version 1 Release 2.4 (5740-CB1, 5740-LM1)
v IBM Enterprise PL/I for z/OS, Version 4.3 or earlier (5655-W67)
v IBM Enterprise PL/I for z/OS and OS/390, Version 3 (5655-H31)
v VisualAge PL/I Compiler, Version 2 Release 2 (5655-B22)
v IBM PL/I for MVS & VM, Version 1.1.1 (5688-235)
v VisualAge PL/I Millennium Language Extensions for MVS & VM, Version 1.0

(5648-MLX)
v OS PL/I Optimizing Compiler, Version 2.3.0 (5668-909, 5668-910, 5668-911)
v OS PL/I Optimizing Compiler, Version 1.5.1 (5734-PL1, 5734-PL3, 5734-LM4,

5734-LM5)
v IBM OS/390 C/C++, Version 2.6 through Version 2.10 (5647-A01)
v High Level Assembler (HLASM), Version 1 Release 2, 3, 4, 5 or 6 (5696-234)
v Assembler H (HASM), Version 2 (5668-962)

Requirements
Coverage Utility has the following requirements:
v Coverage Utility runs under MVS and uses ISPF services to display dialogs and

to produce the JCL to run the Coverage Utility steps.
v As part of its input, Coverage Utility requires listings that have been created by

the application program compilers and assemblers that it supports. These
compilers and assemblers offer options that enable you to include assembler
statements in the listings. Coverage Utility uses these statements to determine
where to insert breakpoints.

v Coverage Utility also requires the application program object modules or load
modules as input. Coverage Utility creates copies of these object modules or
load modules with breakpoints inserted into them.
Related references
Appendix B, “Resources and requirements,” on page 189

6 Debug Tool V13.1 Coverage Utility User's Guide and Messages

Where you can find more information
Refer to the following sections for additional information.

For information about ... See ...

Installing Debug Tool Coverage Utility on
your system

Debug Tool Customization Guide

Samples of Coverage Utility test case
coverage, including sample reports

Chapter 3, “Learning to use the product,” on
page 17

Setting up the table of breakpoints from the
listings

Chapter 6, “Preparing to monitor a
program,” on page 57

Starting the monitor session and running
test cases on your programs

Chapter 7, “Monitoring a program,” on page
73

Commands that control the monitor
program

Chapter 8, “Monitor commands,” on page 81

Reports about the test run Part 5, “Obtaining Coverage Utility reports,”
on page 101

Using Coverage Utility in a large project
environment

Chapter 15, “Using Coverage Utility in a
project environment,” on page 155

Coverage Utility messages Appendix A, “Messages,” on page 167

System resources needed by Coverage
Utility

Appendix B, “Resources and requirements,”
on page 189

DBCS support Appendix C, “DBCS support,” on page 193

Chapter 1. Introduction to Coverage Utility 7

8 Debug Tool V13.1 Coverage Utility User's Guide and Messages

Chapter 2. Getting started

This section contains topics describing how to access the Coverage Utility ISPF
dialog and the Coverage Utility user customization procedures. These topics are of
most interest when you are new to Coverage Utility.
v “Starting the Coverage Utility ISPF dialog”
v “Modifying your Coverage Utility defaults”

Starting the Coverage Utility ISPF dialog
To start the Coverage Utility ISPF dialog, use one of the following methods:
v If an option was installed to access the Debug Tool primary options ISPF panel

from an existing panel, select that option by using instructions from the installer.
v If the Debug Tool data sets were installed into your normal logon procedure,

issue the following command from ISPF option 6:

EQASTART common_parameters

v If Debug Tool was not installed in your ISPF environment, issue this command
from ISPF option 6:

EX ’hi_lev_qual.SEQAEXEC(EQASTART)’ ’common_parameters’

Then select the option for Coverage Utility.

You can use common_parameters to specify any of the parameters that are common
to multiple routines (LINECOUNT, LOCALE, and NATLANG). Separate multiple
parameters by blanks. If you specify any of these common_parameters, your settings
are remembered by EQASTART, and they become the default on subsequent
invocations of EQASTART when you do not specify parameters.

The next panel that you see is this Debug Tool Coverage Utility panel:

------------------------- Debug Tool Coverage Utility -------------------------
Option ===>

0 Defaults Manipulate defaults
1 CntlFile Work with the Control File
2 Setup Create JCL for Setup
3 StartMon Create JCL to Start the Monitor
4 Reports Create Reports
5 Monitor Control the Monitor
6 FastPath FastPath

Enter X to Terminate

Related references
Appendix E, “Parameters that are common to multiple routines,” on page 205

Modifying your Coverage Utility defaults
When Debug Tool Coverage Utility is installed, defaults are established for
information such as the high-level qualifier to use to construct names for user and
project data sets. Typically, you do not have to change these defaults for your user
ID. However, you can use the Coverage Utility panels to change your personal
defaults in the following ways:

© Copyright IBM Corp. 1992, 2014 9

v Edit your defaults.
v Reset your defaults to the site defaults.

In addition, you can save your current defaults or set all of your defaults from a
previously saved copy by using the following functions:
v Export defaults to a sequential data set.
v Import defaults from a sequential data set.

New release: If you are changing from one release of Coverage Utility to another,
it is recommended that you use Defaults RESET (Coverage Utility option 0.2) and
reenter any personal changes.

To change your Coverage Utility user defaults, complete the following steps:
1. Start the Coverage Utility ISPF dialog.
2. Select option 0 from the Debug Tool Coverage Utility panel to specify your

Coverage Utility user default values. The Manipulate Defaults panel is
displayed:

You can change your Coverage Utility user defaults by using the options and
data set name field on this panel.
Related tasks
“Starting the Coverage Utility ISPF dialog” on page 9

Editing your user defaults
To edit your user defaults do these steps:
1. Select option 1 on the Manipulate Defaults panel. The scrollable Edit Defaults

panel is displayed:

----------------------------- Manipulate Defaults -----------------------------
Option ===>

1 EDIT Edit defaults
2 RESET Reset defaults to site defaults
3 IMPORT Import defaults from a sequential dataset
4 EXPORT Export defaults to a sequential dataset

Enter END to Terminate

Import | Export Dataset (Options 3 and 4 only):
Data Set Name

10 Debug Tool V13.1 Coverage Utility User's Guide and Messages

-------------------------------- Edit Defaults --------------------------------
Command ===>

Enter END (to Exit and Save changes) or CANCEL (to Exit without saving)
------------------------------- General Defaults ------------------------------
Project Qualifier. YOUNG.SAMPLE
Use Pgm Name for File Name YES (Yes|No)
Program Name COB01
JCL Output Dsn ’YOUNG.SAMPLE.JCL’

Type JCL
DSORG. PDS (SEQ|PDS)
Alloc Parms. LRECL(80) RECFM(F B) BLKSIZE(0)

TRACKS SPACE(10 10)
1st JOBLIB Dsn ’EQAW.SEQAMOD’
2nd Alternate JOBLIB Dsn .
3rd Alternate JOBLIB Dsn .
4th Alternate JOBLIB Dsn .
5th Alternate JOBLIB Dsn .
6th Alternate JOBLIB Dsn .
REXX Dsn ’EQAW.SEQAEXEC’
Sample Dsn ’EQAW.SEQASAMP’
Display Messages I (S|E|W|R|I)
Log Messages I (S|E|W|R|I)
Control File Dsn ’YOUNG.SAMPLE.DTCU(COB01)’

Type DTCU
DSORG. PDS (SEQ|PDS)
Alloc Parms. LRECL(255) RECFM(V B) BLKSIZE(0)

TRACKS SPACE(10 10)
DD Parms SPACE=(TRK,(2,2)),

DCB=(RECFM=VB,LRECL=255,BLKSIZE=0)
Type of Control File . . . COBOL (COBOL|PL/I|C|ASM)
-------------------------------- Setup Defaults -------------------------------
Jobcard Name YOUNG
Jobcard Operands (12345678),

YOUNG,NOTIFY=YOUNG,USER=YOUNG,TIME=1
MSGCLASS=H,CLASS=A,REGION=32M,MSGLEVEL=(1,1)

JES Control Cards.

Breakpoint Table Dsn . . . ’YOUNG.SAMPLE.BRKTAB(COB01)’
Type BRKTAB
DSORG. SEQ (SEQ|PDS)
Alloc Parms. LRECL(256) RECFM(F B) BLKSIZE(0)

TRACKS SPACE(2 2) UNIT(SYSALLDA)
DD Parms SPACE=(TRK,(2,2)),UNIT=SYSALLDA

DCB=(DSORG=PS,RECFM=FB,LRECL=256,BLKSIZE=0)
SVC number for 2 byte BP . FF (in HEX)
SVC number for 4 byte BP . FE (in HEX)
Performance Mode YES (Yes|No)
Debug Mode NO (Yes|No)
Frequency Count Mode . . . NO (Yes|No)

Chapter 2. Getting started 11

2. Change the Project Qualifier value to the high-level qualifier that you want
Coverage Utility to use to construct names for user and project data sets.

3. To generate or build any data set names automatically, ensure that Use Pgm
Name For File Name is set to Yes. Coverage Utility uses the project qualifier,
the program name, and the specified values for type and DSORG for each data
set to build names of the following forms:
v Sequential data sets:

’proj_qual.program_name.file_type’

For example: 'YOUNG.SAMPLE.COB01.BRKTAB'

------------------------------- Monitor Defaults ------------------------------
Jobcard Name YOUNG
Jobcard Operands (12345678),

YOUNG,NOTIFY=YOUNG,USER=YOUNG,TIME=1,
MSGCLASS=H,CLASS=A,REGION=32M,MSGLEVEL=(1,1)

JES Control Cards.

Breakout Table Dsn ’YOUNG.SAMPLE.BRKOUT(COB01)’
Type BRKOUT
DSORG. PDS (SEQ|PDS)
Alloc Parms. LRECL(256) RECFM(F B) BLKSIZE(0)

TRACKS SPACE(3 3) UNIT(SYSALLDA)
DD Parms SPACE=(TRK,(3,3)),UNIT=SYSALLDA,

DCB=(DSORG=PS,RECFM=FB,LRECL=256,BLKSIZE=0)
------------------------------- Report Defaults -------------------------------
Combined Cntl Dsn. ’YOUNG.SAMPLE.CBCTL(COB01)’

Type CBCTL
DSORG. PDS (SEQ|PDS)

Combined Breakout Dsn. . . ’YOUNG.SAMPLE.COB01.CMBOUT’
Type CMBOUT
DSORG. SEQ (SEQ|PDS)

Jobcard Name YOUNG
Jobcard Operands (12345678),

YOUNG,NOTIFY=YOUNG,USER=YOUNG,
MSGCLASS=H,CLASS=A,REGION=32M,TIME=1

JES Control Cards.

Report File Dsn. ’YOUNG.SAMPLE.COB01.REPORT’
Summary File Dsn ’YOUNG.SAMPLE.COB01.SUMMARY’

Report File Type REPORT
Summary File Type. . . . SUMMARY
DSORG. SEQ (SEQ|PDS)
Alloc Parms. LRECL(133) RECFM(F B A) BLKSIZE(27930)

TRACKS SPACE(10 10)
DD Parms SPACE=(TRK,(10,10)),

DCB=(DSORG=PS,RECFM=FBA,LRECL=133,BLKSIZE=27930)
Summary Type INTERNAL (Internal|External)
Summary Assembler Stmts. . YES
Summary Inline N (I|N)
Annotation Symbols :¬>V%@& (* for default)
Report User Options. . . . A (A|U)
Print Report File Dataset. YES (Yes|No)
Exported XML Dsn ’YOUNG.SAMPLE.COB01.XML’

XML File Type. XML
DSORG. SEQ (SEQ|PDS)
Alloc Parms. LRECL(32756) RECFM(V B) BLKSIZE(32760)

TRACKS SPACE(10 10)
DD Parms SPACE=(TRK,(10,10)),

DCB=(DSORG=PS,RECFM=VB,LRECL=32756,BLKSIZE=32760)
XML Branch Analysis. . . . NO (Yes|No)
XML Frequency. NO (Yes|No)
XML BP Details NO (Yes|No)

12 Debug Tool V13.1 Coverage Utility User's Guide and Messages

v Partitioned data sets:
’proj_qual.file_type(program_name)’

For example: 'YOUNG.SAMPLE.BRKTAB(COB01)'
If you specify No for Use Pgm Name For File Name, Coverage Utility does not
automatically build or change any data set names.

4. If you routinely instrument the same subroutine for different Monitor sessions,
and run the subroutines and sessions simultaneously, set the following options
for the subroutine instrumentation (Setup):
v Performance mode (Yes | No)

Use Yes or No for all instrumentations.
v Debug mode (Yes | No)

Use Yes for all.
v Frequency count mode (Yes | No)

Use Yes for all.

For more information about these options, see “Parameters for the setup
programs” on page 66.

Note: Setting Debug Mode and Frequency count mode might significantly increase
the processing time when running with DTCU.

Resetting your user defaults to the site defaults
To reset your user defaults to the site defaults follow these steps:
1. Select option 2 from the Manipulate Defaults panel. The Reset Defaults to Site

Defaults panel is displayed:

The fields for the panel are as follows:
Project Qualifier

The qualifier to be used to construct data set names for user and
project files when you set Use Program Name for File Name to Yes.

Program Name
The program-specific qualifier to be used when constructing data set
names for user and project files when you set Use Program Name for
File Name to Yes.

2. If you want to reset all of your user defaults to the site defaults using the
project high-level qualifier and the program name specified in the panel, press
Enter. If you do not want to reset your defaults, press the End key (PF3) to
return to the previous panel.

---------------------- Reset Defaults to Site Defaults ------------------------
Command ===>

Project Qualifier. YOUNG.SAMPLE
Program Name COB01

Enter ENTER to Reset Defaults
Enter END to Cancel and Terminate

Chapter 2. Getting started 13

14 Debug Tool V13.1 Coverage Utility User's Guide and Messages

Part 2. Learning to use Coverage Utility

Coverage Utility comes with samples that you can use to generate test case
coverage reports. Use these samples to learn the functions and capabilities of the
tool, to become familiar with how the process works, and to learn what reports
you can generate. This part also describes the samples and how to set up your
own environment in which to run the samples.

© Copyright IBM Corp. 1992, 2014 15

16 Debug Tool V13.1 Coverage Utility User's Guide and Messages

Chapter 3. Learning to use the product

This section describes generating Coverage Utility test case coverage reports by
using the samples provided with Coverage Utility:
v “Using the supplied samples”
v “Preparing to produce a sample report” on page 19
v “Producing a sample summary” on page 22
v “Producing a sample annotated listing report” on page 29

If you are a new user, you are encouraged to run one of the samples as a tutorial.
In this way you can see how the process works and become familiar with the
Coverage Utility outputs.

Coverage Utility provides statistics about each program area (PA) in your
programs. A PA can be any of the following:
v A COBOL paragraph (PROGRAM-ID for Enterprise COBOL for z/OS Version 5)
v A PL/I external or internal procedure, an ON-unit, or a Begin-block
v A C or C++ function
v An assembler CSECT

Coverage Utility does not have to examine all object modules in your program.
You can select which areas of the program you want to test. You can also test
multiple programs (load modules) simultaneously.

Related references
Chapter 4, “Samples that are provided with Coverage Utility,” on page 39

Using the supplied samples
Running the samples generates a summary of test case coverage and annotated
listing report for the sample that you choose from the following programs:

COB01 COBOL sample
PLI01 PL/I sample
C01 C/C++ sample
ASM01 Assembler sample

Use the appropriate program name from the above list for the sample name.
Related tasks
“Allocating sample data sets” on page 19
“Running the samples”
Related references
Chapter 4, “Samples that are provided with Coverage Utility,” on page 39

Running the samples
A flow diagram of the steps that you need to follow to run these samples is shown
here. The names in the steps are the member names of the JCL for the step.

© Copyright IBM Corp. 1992, 2014 17

JCL member names: The JCL member names for the steps, such as SCOB01,
depend on the sample that you are running. For example, the setup JCL for the
PLI01 test case is SPLI01.

DD name: The names outside the boxes in the figure (for example, BRKTAB)
correspond to the DD names in the created JCL.

The example scenarios in this section use the Coverage Utility ISPF dialog to create
the JCL to run the Coverage Utility steps. This ISPF dialog is provided as an aid in
creating the JCL. After you have created the JCL for a test environment, you do not
have to recreate it from the dialog. You do not have to use the ISPF dialog to use
Coverage Utility. In a typical user test environment, you can incorporate the
creation of the JCL into your procedures.

These samples describe instrumenting object modules from listings. You can
similarly instrument load modules.

Program
listings

Object
modules
or load

modules

TCOB01 or
RCOB01

print report on
test run

LCOB01
Link into

executable
program

GCOB01
run sample

program

EQACUOSP
stop monitor

SCOB01
setup step

XCOB01
monitor

Object modules modified
with breakpoints

Instrumented load
modules

BRKTAB:
breakpoint file

BRKOUT
results of test run

summary report in
proj_qual.COB01.SUMMARY

or
summary & annotated listing report

in
proj_qual.COB01.REPORT

18 Debug Tool V13.1 Coverage Utility User's Guide and Messages

Note: For Enterprise COBOL for z/OS Version 5, Coverage Utility only supports
instrumenting load modules. If you are following these instructions for Enterprise
COBOL for z/OS Version 5, run the link (bind) step JCL after the setup step JCL.
Other information unique to Enterprise COBOL for z/OS Version 5 is also called
out when needed in the text.

Related tasks
Chapter 15, “Using Coverage Utility in a project environment,” on page 155
“Instrumenting object modules or load modules” on page 59

Allocating sample data sets
Before you can run a sample as described in the rest of this section, you first need
to create data sets and copy members from hi_lev_qual.SEQASAMP, as described in
the following steps:
1. Allocate your personal sample data sets as described in “User data sets that are

required to run the samples” on page 39.
Allocate at least 10 tracks for each data set. Partitioned data sets should have at
least 10 blocks for the directory.

2. Copy the sample members shown in tables in the following sections from
hi_lev_qual.SEQASAMP into the appropriate data set, renaming the members as
described.
v “COBOL samples” on page 40
v “C/C++ samples” on page 42
v “PL/I samples” on page 41
v “Assembler samples” on page 42

The naming convention shown in the tables assumes that you select only one
compiler version for each language.

3. Edit the Coverage Utility control card members that you copied and change the
high-level qualifier of each sample data set name to your TSO prefix.

4. Edit the JCL members that you copied and do the following:
a. Change the high-level qualifier of each sample data set name to your TSO

prefix.
b. Change the compiler and link-edit library data set names to match the

compiler and link-edit names of your system.
c. Change the job cards to match your local conventions.

Preparing to produce a sample report
To prepare a sample to produce a summary report or an annotated listing of the
sample, perform the following steps. These steps are described in more detail in
topics that follow this one. After you complete these steps, decide which report
you want to generate, summary or annotated, and follow the steps in the
appropriate topic.
1. Compile the sample source. The compilation produces listings that include the

assembler statements that Coverage Utility needs.
Make sure to use the required compiler options.

2. Start the Coverage Utility ISPF dialog; the Debug Tool Coverage Utility panel is
displayed:

Chapter 3. Learning to use the product 19

------------------------- Debug Tool Coverage Utility -------------------------
Option ===>

0 Defaults Manipulate defaults
1 CntlFile Work with the Control File
2 Setup Create JCL for Setup
3 StartMon Create JCL to Start the Monitor
4 Reports Create Reports
5 Monitor Control the Monitor
6 FastPath FastPath

Enter X to Terminate

a. Edit the Coverage Utility control file.
Verify that the control file includes the listings of the object modules that
you want to test.

b. Create the setup JCL.
Create the JCL that enables you to produce a file that contains breakpoint
data and that modifies copies of your object modules by inserting
breakpoints.

c. Create the JCL to start a monitor session.
d. Create the JCL for a report.

Create the JCL to produce a summary report or the annotated listing report
after the sample runs.

3. End the Coverage Utility ISPF dialog by pressing the End key (PF3) to close the
Debug Tool Coverage Utility panel and then the End key to close the Debug
Tool primary options panel.

4. Edit the JCL to link the modified object modules.
After the setup step, and before you start the monitor, you must link the
modified object modules into an executable program that you can test. Edit the
link JCL and specify the library that will contain the modified object modules
for the OBJECT ddname and the library that will contain the modified load
module for the SYSLMOD ddname.

5. Edit the JCL to run the GO step.
Edit the JCL to run your program. Specify the same modified load module as
in step 4.

6. Run the JCL.
Run the created JCL files for the sample in the correct order.
Related tasks
“Compiling the sample”
“Editing the sample control file” on page 21
“Creating sample setup JCL” on page 22
“Creating sample JCL to start a monitor session” on page 23
“Producing a sample summary” on page 22
“Producing a sample annotated listing report” on page 29

Compiling the sample
To compile your source code, do these steps:
1. Edit the sample compile JCL that you copied from hi_lev_qual.SEQASAMP so

that it will run on your system:
a. Change the job card to match your system requirements.
b. Update the compiler data set names to match the data set names for your

local compiler.

20 Debug Tool V13.1 Coverage Utility User's Guide and Messages

c. Update the sample data set names to match the data set names for your
sample data set.

d. Uncomment the member names for the sample that you are compiling.
2. Run the JCL.
3. Make sure that all steps run with a return code of zero and that the listings and

object modules are created.

Editing the sample control file
Coverage Utility uses assembler statements from the compiler listings to determine
where to insert breakpoints. You supply the names of the listing files in the
Coverage Utility control file.

The Coverage Utility control file for the examples are shown here. These examples
show how to instrument object modules.

COB01 PLI01

Defaults ListDsn=YOUNG.SAMPLE.COBOLST(*),
LoadMod=COB01,
FromObjDsn=YOUNG.SAMPLE.OBJ1,
ToObjDsn=YOUNG.SAMPLE.ZAPOBJ

COBOL ListMember=COB01A
COBOL ListMember=COB01B
COBOL ListMember=COB01C
COBOL ListMember=COB01D

Defaults ListDsn=YOUNG.SAMPLE.PLILST(*),
LoadMod=PLI01,
FromObjDsn=YOUNG.SAMPLE.OBJ,
ToObjDsn=YOUNG.SAMPLE.ZAPOBJ

PL/I ListMember=PLI01A
PL/I ListMember=PLI01B
PL/I ListMember=PLI01C
PL/I ListMember=PLI01D

C01 ASM01

Defaults ListDsn=YOUNG.SAMPLE.CLST(*),
LoadMod=C01,
FromObjDsn=YOUNG.SAMPLE.OBJ,
ToObjDsn=YOUNG.SAMPLE.ZAPOBJ

C ListMember=C01A
C ListMember=C01B
C ListMember=C01C
C ListMember=C01D

Defaults ListDsn=YOUNG.SAMPLE.ASMLST(*),
LoadMod=ASM01,
FromObjDsn=YOUNG.SAMPLE.OBJ,
ToObjDsn=YOUNG.SAMPLE.ZAPOBJ

ASM ListMember=ASM01A
ASM ListMember=ASM01B
ASM ListMember=ASM01C
ASM ListMember=ASM01D

To edit the Coverage Utility control file for the selected summary, do the following
steps. Use the program name and language appropriate for the sample that you
are running; the COBOL sample information is shown here.
1. Select option 1 from the Debug Tool Coverage Utility panel.

The Work with the Control File panel is displayed.
2. Specify the following information:

Use Program Name for File Name: YES
Program Name: COB01
Listing Type: COBOL

An ISPF edit session for the Coverage Utility control file that you request is
displayed.
The data in the control file consists of the following information:
v The type of listing file (COBOL)
v The names of the listing files for the programs that you want to test

1. For Enterprise COBOL for z/OS Version 5, remove the FromObjDsn and ToObjDsn keywords, and add
FromLoadDsn=YOUNG.SAMPLE.LOADLIBP, ToLoadDsn=YOUNG.SAMPLE.RUNLIBP.

Chapter 3. Learning to use the product 21

v The names of the load modules that contain the code of each listing
v The copy to or from information for making copies of the object modules

into which the breakpoints are inserted
If the control file that you request did not previously exist, it is created from a
sample template that contains comments. The comments help you enter the
appropriate information in the fields.

3. Verify the accuracy of the listing data set names and the object module names
for copying to or from. Typically these are the same as the names that are
shown in the above figure, except that your TSO prefix is used as the high-level
qualifier for each data set.

4. Press the End key (PF3) to terminate the edit session.
Related tasks
Chapter 5, “Describing the compile units to be analyzed,” on page 45

Producing a sample summary
To produce a summary for a sample program, do the following steps:
1. “Creating sample setup JCL”
2. “Creating sample JCL to start a monitor session” on page 23
3. “Creating JCL for a sample summary report” on page 23
4. “Editing sample JCL to link and run” on page 24
5. “Running the summary sample JCL” on page 24

“Example: Summary report for COB01” on page 24
“Example: Summary report for PLI01” on page 26
“Example: Summary report for C01” on page 27
“Example: Summary report for ASM01” on page 28
Related tasks
“Running the summary sample JCL” on page 24
“Starting the Coverage Utility ISPF dialog” on page 9
Related references
“Compiler options required by Coverage Utility” on page 61

Creating sample setup JCL
Before the sample program can be monitored, Coverage Utility must insert
breakpoints into the test program. Coverage Utility does this by using the setup
JCL.

When you run the setup JCL, the Coverage Utility setup program analyzes the
assembler statements in the compiler listings and creates a table that contains
breakpoint data (address, op code, and so on). Breakpoints are inserted in the
instrumented object modules or load modules. If you instrumented object modules,
you then link these modified object modules into a modified sample load module
for Coverage Utility to use.

To create the setup JCL:
1. Select option 2 from the Debug Tool Coverage Utility panel.

The Create JCL for Setup panel is displayed.
All of the default values on this panel are correct for the sample. The defaults
are usually correct for your test coverage run. The only field that you might
need to change is the Program Name field.

2. If necessary, change the program name to the sample name.
3. Select option 1.

22 Debug Tool V13.1 Coverage Utility User's Guide and Messages

Informational messages are written to your screen as the JCL is created. The
created JCL is put into the JCL library that is identified on the panel bye the
member name Ssample, where sample is the sample name, such as SCOB01.

4. Press the End key (PF3) to exit the panel.
Related tasks
Chapter 6, “Preparing to monitor a program,” on page 57

Creating sample JCL to start a monitor session
JCL is required to start a Coverage Utility monitor session.

To create the JCL to start a monitor session, do these steps:
1. Select option 3 from the Debug Tool Coverage Utility panel.

The Create JCL to Start the Monitor panel is displayed.
2. If necessary, change the program name to the sample name.
3. Select option 1.

Informational messages are written to your screen as the JCL is created. The
created JCL is put into the JCL library that is identified on the panel by the
member name Xsample, where sample is the name of the sample, such as
XCOB01.

4. Press the End key (PF3) to exit the panel.
Use the start monitor JCL to start a monitor session before you run your test
case program. You can perform Coverage Utility execution on a system other
than the one on which you have stored the listing.
Related tasks
Chapter 7, “Monitoring a program,” on page 73

Creating JCL for a sample summary report
JCL is required to generate a summary report.

To create the summary report JCL:
1. Select option 4 from the Debug Tool Coverage Utility panel.

The Create Reports panel is displayed.
2. Select option 1.

The Create JCL for Summary Report panel is displayed. You create the JCL for
generating the sample summary report from this panel.

3. If necessary, change Program Name to the sample name.
4. Select option 1.

Informational messages are written to your screen as the JCL is created. The
created JCL is put into the JCL library that is identified on the panel by the
member name Tsample, where sample is the sample name, such as TCOB01.

5. Press the End key (PF3) to exit the panel.
Related tasks
“Creating summary report JCL by using the panels” on page 103
Related references
Chapter 10, “Summary report,” on page 109

Chapter 3. Learning to use the product 23

Editing sample JCL to link and run
You must link the modified object modules (modified by the setup step) into an
executable program for testing. Edit the sample link-edit JCL that you copied from
hi_lev_qual.SEQASAMP so that it will run on your system. Use your local library
names and your sample data set names.

Edit the sample GO JCL that you copied from hi_lev_qual.SEQASAMP so that it
will run on your system. Use your local library names and your sample data set
names.

Running the summary sample JCL
When you have created all of the sample JCL, you can run the summary sample
by running the following functions in the order listed, where sample is the sample
name, such as COB01 or PLI01:

Function name Purpose Expected results

Compile 2 Performs the compile
step

All JCL steps complete with condition code 0.

Ssample 1 Performs the setup
step

All JCL steps complete with condition code 0.

Lsample 2 Links the object
modules

The object modules that were modified with
breakpoints in the setup step are linked into
the sample load module.

Xsample 1 Starts the monitor All JCL steps complete with condition code 0.

Gsample 2 Runs the sample
program

The sample runs to completion with
condition code 0.

EQACUOSA 3

(optional)
Displays statistics A nonzero EVNTS count is in the TOTALS

line

EQACUOSP 3 Stops the monitor
session

Coverage Utility writes the statistics to disk

Tsample 1 Creates the summary
of the sample

The summary is in data set
proj_qual.sample.SUMMARY

1. JCL is created from the panels and put into the JCL library.

2. JCL is supplied with the installation materials in hlq.SEQASAMP.

3. From either the Control the Monitor panel or the TSO command processor (ISPF option
6) enter the following command, where dtcucmd is a monitor command such as
EQACUOSA or EQACUOSP:

EX ’hlq.SEQAEXEC(dtcucmd)’

Related tasks
“Using the supplied samples” on page 17

Example: Summary report for COB01
This is the summary report that is produced when you use the COBOL sample
program COB01.

24 Debug Tool V13.1 Coverage Utility User's Guide and Messages

Related references
Chapter 10, “Summary report,” on page 109

Example: Summary report for COB01 (Enterprise COBOL for z/OS
Version 5)

This is the summary report that is produced when you use the COBOL sample
program COB01 (Enterprise COBOL for z/OS Version 5).

********* DTCU SUMMARY: PROGRAM AREA DATA ********
DATE: 07/01/2002
TIME: 10:07:13

TEST CASE ID:
|<-- PROGRAM IDENTIFICATION -->|
| | | STATEMENTS: | BRANCHES: |
| PA LOAD MOD PROCEDURE | LISTING NAME | TOTAL EXEC % | CPATH TAKEN % |

1 COB01 PROG YOUNG.SAMPLE.COBOLST(COB01A) 6 6 100.0
2 PROGA 5 4 80.0
3 PROCA 1 0 0.0
4 LOOP1 3 3 100.0
5 LOOP2 2 2 100.0
6 COB01 PROGB YOUNG.SAMPLE.COBOLST(COB01B) 6 5 83.3
7 PROCB 1 1 100.0
8 LOOP1 3 3 100.0
9 COB01 PROGC YOUNG.SAMPLE.COBOLST(COB01C) 5 5 100.0
10 PROCC 3 2 66.7
11 LOOP1 4 3 75.0
12 LOOP2 2 2 100.0
13 COB01 PROGD YOUNG.SAMPLE.COBOLST(COB01D) 4 0 0.0
14 PROCD 1 0 0.0
15 LOOP1 1 0 0.0

Summary for all PAs: 47 36 76.6 0 0 100.0

********* DTCU SUMMARY: UNEXECUTED CODE ********
DATE: 07/01/2002
TIME: 10:07:13

TEST CASE ID:
|<-- PROGRAM IDENTIFICATION -->|
| | |
| PA LOAD MOD PROCEDURE | LISTING NAME | start end start end start end

2 COB01 PROGA YOUNG.SAMPLE.COBOLST(COB01A) 58 58
3 PROCA 68 68
6 COB01 PROGB YOUNG.SAMPLE.COBOLST(COB01B) 40 40
10 COB01 PROCC YOUNG.SAMPLE.COBOLST(COB01C) 46 46
11 LOOP1 55 55
13 COB01 PROGD YOUNG.SAMPLE.COBOLST(COB01D) 32 37
14 PROCD 41 41
15 LOOP1 45 45

********* DTCU SUMMARY: BRANCHES THAT HAVE NOT GONE BOTH WAYS ********
DATE: 07/01/2002
TIME: 10:07:13

TEST CASE ID:
|<-- PROGRAM IDENTIFICATION -->|
| | |
| PA LOAD MOD PROCEDURE | LISTING NAME | stmt stmt stmt stmt stmt
--
--

Chapter 3. Learning to use the product 25

Related references
Chapter 10, “Summary report,” on page 109

Example: Summary report for PLI01
This is the summary report that is produced when you use the PL/I sample
program PLI01.

********* DTCU SUMMARY: PROGRAM AREA DATA ********
DATE: 04/18/2013
TIME: 12:52:51

TEST CASE ID:
|<-- PROGRAM IDENTIFICATION -->|
| | | STATEMENTS: | BRANCHES: |
| PA LOAD MOD PROCEDURE | LISTING NAME | TOTAL EXEC % | CPATH TAKEN % |
--

1 COB01 COB01A YOUNG.SAMPLE.COBOLST(COB01A) 17 15 88.2
2 COB01 COB01B YOUNG.SAMPLE.COBOLST(COB01B) 10 9 90.0
3 COB01 COB01C YOUNG.SAMPLE.COBOLST(COB01C) 14 12 85.7
4 COB01 COB01D YOUNG.SAMPLE.COBOLST(COB01D) 6 0 0.0

--
Summary for all PAs: 47 36 76.6 0 0 100.0

********* DTCU SUMMARY: UNEXECUTED CODE ********
DATE: 04/18/2013
TIME: 12:52:51

TEST CASE ID:
|<-- PROGRAM IDENTIFICATION -->|
| | |
| PA LOAD MOD PROCEDURE | LISTING NAME | start end start end start end
--

1 COB01 COB01A YOUNG.SAMPLE.COBOLST(COB01A) 58 58 68 68
2 COB01 COB01B YOUNG.SAMPLE.COBOLST(COB01B) 40 40
3 COB01 COB01C YOUNG.SAMPLE.COBOLST(COB01C) 46 46 55 55
4 COB01 COB01D YOUNG.SAMPLE.COBOLST(COB01D) 32 45

--

********* DTCU SUMMARY: BRANCHES THAT HAVE NOT GONE BOTH WAYS ********
DATE: 04/18/2013
TIME: 12:52:51

TEST CASE ID:
|<-- PROGRAM IDENTIFICATION -->|
| | |
| PA LOAD MOD PROCEDURE | LISTING NAME | stmt stmt stmt stmt stmt
--
--

26 Debug Tool V13.1 Coverage Utility User's Guide and Messages

Example: Summary report for C01
This is the summary report that is produced when you use the C sample program
C01.

********* DTCU SUMMARY: PROGRAM AREA DATA ********
DATE: 07/01/2002
TIME: 10:08:38

TEST CASE ID:
|<-- PROGRAM IDENTIFICATION -->|
| | | STATEMENTS: | BRANCHES: |
| PA LOAD MOD PROCEDURE | LISTING NAME | TOTAL EXEC % | CPATH TAKEN % |
--

1 PLI01 PLI01A YOUNG.SAMPLE.PLILST(PLI01A) 9 9 100.0
2 PROC2A 2 0 0.0
3 PLI01 PLI01B YOUNG.SAMPLE.PLILST(PLI01B) 11 8 72.7
4 PROC1 2 2 100.0
5 PLI01 PLI01C YOUNG.SAMPLE.PLILST(PLI01C) 7 4 57.1
6 PROC1 4 3 75.0
7 PLI01 PLI01D YOUNG.SAMPLE.PLILST(PLI01D) 2 0 0.0
8 PROC1 4 0 0.0

--
Summary for all PAs: 41 26 63.4 0 0 100.0

********* DTCU SUMMARY: UNEXECUTED CODE ********
DATE: 07/01/2002
TIME: 10:08:38

TEST CASE ID:
|<-- PROGRAM IDENTIFICATION -->|
| | |
| PA LOAD MOD PROCEDURE | LISTING NAME | start end start end start end
--

2 PLI01 PROC2A YOUNG.SAMPLE.PLILST(PLI01A) 17 18
3 PLI01 PLI01B YOUNG.SAMPLE.PLILST(PLI01B) 9 9 15 16
5 PLI01 PLI01C YOUNG.SAMPLE.PLILST(PLI01C) 6 6 10 11
6 PROC1 16 16
7 PLI01 PLI01D YOUNG.SAMPLE.PLILST(PLI01D) 3 11
8 PROC1 6 10

--

********* DTCU SUMMARY: BRANCHES THAT HAVE NOT GONE BOTH WAYS ********
DATE: 07/01/2002
TIME: 10:08:38

TEST CASE ID:
|<-- PROGRAM IDENTIFICATION -->|
| | |
| PA LOAD MOD PROCEDURE | LISTING NAME | stmt stmt stmt stmt stmt
--
--

Chapter 3. Learning to use the product 27

Example: Summary report for ASM01
This is the summary report that is produced when you use the assembler sample
program ASM01.

********* DTCU SUMMARY: PROGRAM AREA DATA ********
DATE: 07/01/2002
TIME: 10:09:17

TEST CASE ID:
|<-- PROGRAM IDENTIFICATION -->|
| | | STATEMENTS: | BRANCHES: |
| PA LOAD MOD PROCEDURE | LISTING NAME | TOTAL EXEC % | CPATH TAKEN % |
--

1 C01 PROCA YOUNG.SAMPLE.CLST(C01A) 2 0 0.0
2 main 10 9 90.0
3 C01 PROCB YOUNG.SAMPLE.CLST(C01B) 2 2 100.0
4 C01B 9 8 88.9
5 C01 PROCC YOUNG.SAMPLE.CLST(C01C) 4 3 75.0
6 C01C 8 6 75.0
7 C01 PROCD YOUNG.SAMPLE.CLST(C01D) 3 0 0.0
8 C01D 3 0 0.0

--
Summary for all PAs: 41 28 68.3 0 0 100.0

********* DTCU SUMMARY: UNEXECUTED CODE ********
DATE: 07/01/2002
TIME: 10:09:17

TEST CASE ID:
|<-- PROGRAM IDENTIFICATION -->|
| | |
| PA LOAD MOD PROCEDURE | LISTING NAME | start end start end start end
--

1 C01 PROCA YOUNG.SAMPLE.CLST(C01A) 29 31
2 main 25 25
4 C01 C01B YOUNG.SAMPLE.CLST(C01B) 27 27
5 C01 PROCC YOUNG.SAMPLE.CLST(C01C) 34 34
6 C01C 21 21 26 26
7 C01 PROCD YOUNG.SAMPLE.CLST(C01D) 21 25
8 C01D 15 19

--

********* DTCU SUMMARY: BRANCHES THAT HAVE NOT GONE BOTH WAYS ********
DATE: 07/01/2002
TIME: 10:09:17

TEST CASE ID:
|<-- PROGRAM IDENTIFICATION -->|
| | |
| PA LOAD MOD PROCEDURE | LISTING NAME | stmt stmt stmt stmt stmt
--
--

28 Debug Tool V13.1 Coverage Utility User's Guide and Messages

Producing a sample annotated listing report
If you want more information on some or all of the modules that you tested, you
can create an annotated listing report of the sample listing. This listing contains
information about each breakpoint. To the right of each statement number, one of
the following symbols is shown to indicate the results of the execution of that
statement:
: Instruction has executed.
¬ Instruction has not executed.

In addition to the above annotation symbols used for COBOL, PL/I and C, the
following symbols are used for assembler:

@ Data area

% Unconditional branch that has been executed

To produce an annotated listing of a sample, do the following steps:
1. “Creating sample setup JCL” on page 22
2. “Creating sample JCL to start a monitor session” on page 23
3. “Creating JCL for an annotated listing report” on page 30.
4. “Editing sample JCL to link and run” on page 24
5. “Running the annotated sample JCL” on page 30.

“Example: COBOL annotated listing report” on page 31

********* DTCU SUMMARY: PROGRAM AREA DATA ********
DATE: 07/01/2002
TIME: 10:08:12

TEST CASE ID:
|<-- PROGRAM IDENTIFICATION -->|
| | | STATEMENTS: | BRANCHES: |
| PA LOAD MOD PROCEDURE | LISTING NAME | TOTAL EXEC % | CPATH TAKEN % |
--

1 ASM01 TEST2 YOUNG.SAMPLE.ASMLST(ASM01A) 41 31 75.6
2 ASM01 TEST2B YOUNG.SAMPLE.ASMLST(ASM01B) 45 39 86.7
3 ASM01 TEST2C YOUNG.SAMPLE.ASMLST(ASM01C) 39 32 82.1
4 ASM01 TEST2D YOUNG.SAMPLE.ASMLST(ASM01D) 25 0 0.0

--
Summary for all PAs: 150 102 68.0 0 0 100.0

********* DTCU SUMMARY: UNEXECUTED CODE ********
DATE: 07/01/2002
TIME: 10:08:12

TEST CASE ID:
|<-- PROGRAM IDENTIFICATION -->|
| | |
| PA LOAD MOD PROCEDURE | LISTING NAME | start end start end start end
--

1 ASM01 TEST2 YOUNG.SAMPLE.ASMLST(ASM01A) 000056 000062 000086 0000A0
2 ASM01 TEST2B YOUNG.SAMPLE.ASMLST(ASM01B) 000050 00005A 000078 000082
3 ASM01 TEST2C YOUNG.SAMPLE.ASMLST(ASM01C) 000034 00003A 000050 00005A 000092 000098
4 ASM01 TEST2D YOUNG.SAMPLE.ASMLST(ASM01D) 000000 000000 000016 00006C

--

********* DTCU SUMMARY: BRANCHES THAT HAVE NOT GONE BOTH WAYS ********
DATE: 07/01/2002
TIME: 10:08:12

TEST CASE ID:
|<-- PROGRAM IDENTIFICATION -->|
| | |
| PA LOAD MOD PROCEDURE | LISTING NAME | stmt stmt stmt stmt stmt
--
--

Chapter 3. Learning to use the product 29

“Example: PL/I annotated listing report” on page 33
“Example: C/C++ annotated listing report” on page 34
“Example: Assembler annotated listing report” on page 35
Related tasks
“Producing a sample summary” on page 22
“Starting the Coverage Utility ISPF dialog” on page 9
“Running the annotated sample JCL”
Related references
“Compiler options required by Coverage Utility” on page 61

Creating JCL for an annotated listing report
To create the annotated listing report JCL, do the following steps:
1. Select option 4 from the Debug Tool Coverage Utility panel.

The Create Reports panel is displayed.
2. Select option 2.

The Create JCL for Summary and Annotation Report panel is displayed. You
create the JCL for printing the annotated listing report (along with a summary)
for the sample from this panel.

3. If necessary, change the program name to the sample name.
4. Select option 1.

Informational messages are written to your screen as the JCL is created. The
created JCL is put into the JCL library that is identified on the panel by the
member name Rsample, where sample is the name of the sample, such as
RCOB01.

5. Press the End key (PF3) to exit the panel.
Related tasks
“Creating annotated listing report JCL by using the panels” on page 105
Related references
Chapter 11, “Annotated listing report,” on page 121

Running the annotated sample JCL
When you have created all of the sample JCL, you can run the sample by running
the following JCL in the order listed in the table below, where sample is the sample
name, such as COB01 or PLI01. If you have run the summary sample JCL, then
you only need to run Rsample.

Function name Purpose Expected results

Compile2 Performs the
compile step

All JCL steps complete with condition code 0.

Ssample 1 Performs the setup
step

All JCL steps complete with condition code 0.

Lsample 2 Links the object
modules

The object modules that were modified with
breakpoints in the setup step are linked into
the sample load module.

Xsample 1 Starts the monitor All JCL steps complete with condition code 0.

Gsample 2 Runs the sample
program

The sample runs to completion with
condition code 0.

EQACUOSA 3

(optional)
Displays statistics A nonzero EVNTS count in the TOTALS line.

EQACUOSP 3 Stops the monitor
session

Coverage Utility writes the statistics to disk.

30 Debug Tool V13.1 Coverage Utility User's Guide and Messages

Function name Purpose Expected results

Rsample 1 Creates the
annotated listing
report (and
summary report) of
the sample

The report is in data set
proj_qual.sample.REPORT.

1. The JCL is created from the panels and put into the JCL library.

2. The JCL is supplied with the installation materials in hlq.SEQASAMP.

3. From either the Control the Monitor panel or the TSO command processor (ISPF option
6), enter the following command, where dtcucmd is the command such as EQACUOSA
or EQACUOSP:

EX ’hlq.SEQAEXEC(dtcucmd)’

Related tasks
“Using the supplied samples” on page 17

Example: COBOL annotated listing report
This is the annotated listing report that is produced when you use the COBOL
sample program COB01.

Chapter 3. Learning to use the product 31

LineID PL SL ----+-*A-1-B--+----2----+----3----+----4----+----5----+----6----+----7-|
000001 * COB01A - COBOL EXAMPLE FOR DTCU
000002
000003 IDENTIFICATION DIVISION.
000004 PROGRAM-ID. COB01A.
000005 **
000006 * Licensed Materials - Property of IBM *
000007 * *
000008 * 5655-M18: Debug Tool for z/OS *
000009 * 5655-M19: Debug Tool Utilities and Advanced Functions for z/OS *
000010 * (C) Copyright IBM Corp. 1997, 2004 All Rights Reserved *
000011 * *
000012 * US Government Users Restricted Rights - Use, duplication or *
000013 * disclosure restricted by GSA ADP Schedule Contract with IBM *
000014 * Corp. *
000015 * *
000016 **
000017
000018
000019 ENVIRONMENT DIVISION.
000020
000021 DATA DIVISION.
000022
000023 WORKING-STORAGE SECTION.
000024 01 TAPARM1 PIC 99 VALUE 5.
000025 01 TAPARM2 PIC 99 VALUE 2.
000026 01 COB01B PIC X(6) VALUE ’COB01B’.
000027 01 P1PARM1 PIC 99 VALUE 0.
000028
000029 01 TASTRUCT.
000030 05 LOC-ID.
000031 10 STATE PIC X(2).
000032 10 CITY PIC X(3).
000033 05 OP-SYS PIC X(3).
000034
000035 PROCEDURE DIVISION.
000036
000037 * THE FOLLOWING ALWAYS PERFORMED
000038
000039 PROG.
000040 * ACCESS BY TOP LEVEL QUALIFIER
000041 : MOVE ’ILCHIMVS’ TO TASTRUCT
000042
000043 * ACCESS BY MID LEVEL QUALIFIERS
000044 : MOVE ’ILSPR’ TO LOC-ID
000045 : MOVE ’AIX’ TO OP-SYS
000046
000047 * ACCESS BY LOW LEVEL QUALIFIERS
000048 : MOVE ’KY’ TO STATE
000049 : MOVE ’LEX’ TO CITY
000050 : MOVE ’VM ’ TO OP-SYS
000051 .
000052
000053 PROGA.
000054 : PERFORM LOOP1 UNTIL TAPARM1 = 0
000055
000056 : IF TAPARM2 = 0 THEN
000057 * PROCA NOT EXECUTED
000058 ^ 1 PERFORM PROCA.
000059

32 Debug Tool V13.1 Coverage Utility User's Guide and Messages

Example: PL/I annotated listing report
This is the annotated listing report that is produced when you use the PL/I sample
program PLI01.

000060
000061 : PERFORM LOOP2 UNTIL TAPARM2 = 0
000062 .
000063 : STOP RUN
000064 .
000065
000066 PROCA.
000067 * PROCA NOT EXECUTED
000068 ^ MOVE 10 TO P1PARM1
000069 .
000070 LOOP1.
000071 : IF TAPARM1 > 0 THEN
000072 : 1 SUBTRACT 1 FROM TAPARM1.
000073 : CALL ’COB01B’
000074 .
000075 LOOP2.
000076 : IF TAPARM2 > 0 THEN
000077 : 1 SUBTRACT 1 FROM TAPARM2.
000078

Chapter 3. Learning to use the product 33

Example: C/C++ annotated listing report
This is the annotated listing report that is produced when you use the C/C++
sample program C01.

STMT
1 PLI01A:PROC OPTIONS(MAIN); /* PL/I DTCU TESTCASE */

/**/
/* Licensed Materials - Property of IBM */
/* */
/* 5655-M18: Debug Tool for z/OS */
/* 5655-M19: Debug Tool Utilities and Advanced Functions for z/OS */
/* (C) Copyright IBM Corp. 1997, 2004 All Rights Reserved */
/* */
/* US Government Users Restricted Rights - Use, duplication or */
/* disclosure restricted by GSA ADP Schedule Contract with IBM Corp.*/
/* */
/**/

2 DCL EXPARM1 FIXED BIN(31) INIT(5);
3 DCL EXPARM2 FIXED BIN(31) INIT(2);
4 DCL PARM2 FIXED BIN(31) INIT(2);
5 DCL PLI01B EXTERNAL ENTRY; /* */
6: DO WHILE (EXPARM1 > 0); /* THIS DO LOOP EXECUTED 5 TIMES*/
7: EXPARM1 = EXPARM1 -1; /* */
8: CALL PLI01B(PARM2); /* PLI01B CALLED 5 TIMES */
9: END;
10: IF (EXPARM2 = 0) THEN /* THIS BRANCH ALWAYS TAKEN */

CALL PROC2A(EXPARM2); /* PROC2A NEVER CALLED */
11: DO WHILE (EXPARM2 > 0); /* DO LOOP EXECUTED TWICE */
12: EXPARM2 = EXPARM2 - 1;
13: END;
14: RETURN;

15 PROC2A: PROCEDURE(P1PARM1); /* THIS PROCEDURE NEVER EXECUTED */
16 DCL P1PARM1 FIXED BIN(31);
17^ P1PARM1 = 10;
18^ END PROC2A;
19 END PLI01A;

34 Debug Tool V13.1 Coverage Utility User's Guide and Messages

Example: Assembler annotated listing report
This is the annotated listing report that is produced when yo use the Assembler
sample program ASM01.

* * * * * S O U R C E * * * * *

LINE STMT SEQNBR INCNO
...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8....+....9....+..

1 | main() | 1
2 | /**/ | 2
3 | /* Licensed Materials - Property of IBM */ | 3
4 | /* */ | 4
5 | /* 5655-M18: Debug Tool for z/OS */ | 5
6 | /* 5655-M19: Debug Tool Utilities and Advanced Functions for z/OS */ | 6
7 | /* (C) Copyright IBM Corp. 1997, 2004 All Rights Reserved */ | 7
8 | /* */ | 8
9 | /* US Government Users Restricted Rights - Use, duplication or */ | 9
10 | /* disclosure restricted by GSA ADP Schedule Contract with IBM Corp.*/ | 10
11 | /* */ | 11
12 | /**/ | 12
13 | | 13
14 | { | 14
15: 1 | int EXPARM1 = 5; | 15
16: 2 | int EXPARM2 = 2; | 16
17 | extern void C01B(void); | 17
18 | void PROCA(int); /* function not called */ | 18
19: 3 | while (EXPARM1 > 0) /* execute loop 5 times */ | 19
20 | { | 20
21: 4 | EXPARM1 = EXPARM1 -1; | 21
22: 5 | C01B(); /* call C01B 5 times */ | 22
23 | } | 23
24: 6 | if (EXPARM2 == 0) /* branch taken */ | 24
25¬ 7 | PROCA(EXPARM2); /* not executed */ | 25
26: 8 | while (EXPARM2 > 0) /* loop execute 2 times */ | 26
27: 9 | EXPARM2 = EXPARM2 - 1; /* executed twice */ | 27
28: | } | 28
29¬ | void PROCA(int P1PARM1) /* function not called */ | 29
30 | { | 30
31¬ 10 | P1PARM1 = 10; /* not executed */ | 31
32 | } | 32

Chapter 3. Learning to use the product 35

Active Usings: None
Loc Object Code Addr1 Addr2 Stmt Source Statement HLASM R4.0 2002/07/01 07.20

1 **
2 * Licensed Materials - Property of IBM *
3 * *
4 * 5655-M18: Debug Tool for z/OS *
5 * 5655-M19: Debug Tool Utilities and Advanced Functions for z/OS *
6 * (C) Copyright IBM Corp. 1997, 2004 All Rights Reserved *
7 * *
8 * US Government Users Restricted Rights - Use, duplication or *
9 * disclosure restricted by GSA ADP Schedule Contract with IBM *
10 * Corp. *
11 * *
12 **
13 *
14 **
15 * *
16 * DTCU ASSEMBLER TESTCASE. *
17 * *
18 **

000000 00000 00110 19 TEST2 CSECT , 01S0001
000000 20 @MAINENT DS 0H 01S0001

R:F 00000 21 USING *,@15 01S0001
000000 47F0 F016 00016 22% B @PROLOG 01S0001
000004 10 23@ DC AL1(16) 01S0001
000005 E3C5E2E3F2404040 24@ DC C’TEST2 97.295’ 01S0001

25 DROP @15
000015 00
000016 90EC D00C 0000C 26:@PROLOG STM @14,@12,12(@13) 01S0001
00001A 18CF 27: LR @12,@15 01S0001

00000 28 @PSTART EQU TEST2 01S0001
R:C 00000 29 USING @PSTART,@12 01S0001

00001C 50D0 C0B0 000B0 30: ST @13,@SA00001+4 01S0001
000020 41E0 C0AC 000AC 31: LA @14,@SA00001 01S0001
000024 50E0 D008 00008 32: ST @14,8(,@13) 01S0001
000028 18DE 33: LR @13,@14 01S0001

34 * DO WHILE(EXPARM1>0); /* THIS DO LOOP EXECUTED 5 TIMES */
00002A 47F0 C042 00042 35% B @DE00006 01S0006
00002E 36 @DL00006 DS 0H 01S0007

37 * EXPARM1 = EXPARM1 - 1; /* */
00002E 5810 C100 00100 38: L @01,EXPARM1 01S0007
000032 0610 39: BCTR @01,0 01S0007
000034 5010 C100 00100 40: ST @01,EXPARM1 01S0007

41 * CALL TEST2B(PARM2); /* TEST2B CALLED 5 TIMES */
000038 58F0 C0F8 000F8 42: L @15,@CV00063 01S0008
00003C 4110 C0A4 000A4 43: LA @01,@AL00002 01S0008
000040 05EF 44% BALR @14,@15 01S0008

45 * END;
000042 5800 C100 00100 46:@DE00006 L @00,EXPARM1 01S0009
000046 1200 47: LTR @00,@00 01S0009
000048 4720 C02E 0002E 48: BP @DL00006 01S0009

49 * IF (EXPARM2 = 0) THEN /* THIS BRANCH ALWAYS TAKEN */
00004C 5810 C104 00104 50: L @01,EXPARM2 01S0010
000050 1211 51: LTR @01,@01 01S0010
000052 4770 C06C 0006C 52: BNZ @RF00010 01S0010

53 * CALL PROC1(EXPARM2); /* PROC1 NEVER CALLED */
000056 4110 C0A8 000A8 54^ LA @01,@AL00003 01S0011
00005A 45E0 C086 00086 55^ BAL @14,PROC1 01S0011

56 * DO WHILE(EXPARM2>0); /* DO LOOP EXECUTED TWICE */
00005E 47F0 C06C 0006C 57^ B @DE00012 01S0012

36 Debug Tool V13.1 Coverage Utility User's Guide and Messages

000062 58 @DL00012 DS 0H 01S0013
59 * EXPARM2 = EXPARM2 - 1; 01S0013

000062 5820 C104 00104 60: L @02,EXPARM2 01S0013
000066 0620 61: BCTR @02,0 01S0013
000068 5020 C104 00104 62: ST @02,EXPARM2 01S0013

63 * END; 01S0014
00006C 5830 C104 00104 64:@DE00012 L @03,EXPARM2 01S0014
000070 1233 65: LTR @03,@03 01S0014
000072 4720 C062 00062 66: BP @DL00012 01S0014

67 * RETURN CODE(0); 01S0015
000076 1FFF 68: SLR @15,@15 01S0015
000078 58D0 D004 00004 69: L @13,4(,@13) 01S0015
00007C 58E0 D00C 0000C 70: L @14,12(,@13) 01S0015
000080 980C D014 00014 71: LM @00,@12,20(@13) 01S0015
000084 07FE 72% BR @14 01S0015

73 * END TEST2; 01S0020
74 *PROC1: 01S0016
75 * PROCEDURE(P1PARM1); /* THIS PROCEDURE NEVER EXECUTED */

000086 90EC D00C 0000C 76^PROC1 STM @14,@12,12(@13) 01S0016
00008A D203 C0F4 1000 000F4 00000 77^ MVC @PC00002(4),0(@01) 01S0016

78 * P1PARM1 = 10; 01S0018
000090 5820 C0F4 000F4 79^ L @02,@PA00064 01S0018
000094 4130 000A 0000A 80^ LA @03,10 01S0018
000098 5030 2000 00000 81^ ST @03,P1PARM1(,@02) 01S0018

82 * END PROC1; 01S0019
00009C 83 @EL00002 DS 0H 01S0019
00009C 84 @EF00002 DS 0H 01S0019
00009C 98EC D00C 0000C 85^@ER00002 LM @14,@12,12(@13) 01S0019
0000A0 07FE 86^ BR @14 01S0019
0000A2 87 @DATA DS 0H
0000A4 88 DS 0F
0000A4 89 @AL00002 DS 0A
0000A4 00000108 90@ DC A(PARM2)
0000A8 91 @AL00003 DS 0A
0000A8 00000104 92@ DC A(EXPARM2)
0000AC 93 DS 0F
0000AC 94@@SA00001 DS 18F
0000F4 95@@PC00002 DS 1F
0000F8 96 DS 0F
0000F8 00000000 97@@CV00063 DC V(TEST2B)
000100 98 LTORG
000100 99 DS 0D
000100 00000005 100@EXPARM1 DC F’5’
000104 00000002 101@EXPARM2 DC F’2’
000108 00000002 102@PARM2 DC F’2’

00000 103 @DYNSIZE EQU 0
00000 104 @00 EQU 0
00001 105 @01 EQU 1
00002 106 @02 EQU 2
00003 107 @03 EQU 3
00004 108 @04 EQU 4
00005 109 @05 EQU 5
00006 110 @06 EQU 6
00007 111 @07 EQU 7
00008 112 @08 EQU 8
00009 113 @09 EQU 9
0000A 114 @10 EQU 10
0000B 115 @11 EQU 11
0000C 116 @12 EQU 12
0000D 117 @13 EQU 13
0000E 118 @14 EQU 14
0000F 119 @15 EQU 15
00000 00004 120 P1PARM1 EQU 0,4,C’F’
000F4 00004 121 @PA00064 EQU @PC00002,4,C’F’
0006C 122 @RF00010 EQU @DE00012

000110 123 DS 0D
00110 124 @ENDDATA EQU *
00110 125 @MODLEN EQU @ENDDATA-TEST2

126 END ,

Chapter 3. Learning to use the product 37

38 Debug Tool V13.1 Coverage Utility User's Guide and Messages

Chapter 4. Samples that are provided with Coverage Utility

This section describes the samples that are shipped with Debug Tool and the data
sets that you need to allocate for each sample that you run.

“User data sets that are required to run the samples”
“COBOL samples” on page 40
“PL/I samples” on page 41
“C/C++ samples” on page 42
“Assembler samples” on page 42

User data sets that are required to run the samples
Before you run the samples, allocate your personal sample data sets as shown in
this table:

Data set name LRECL BLKSIZE RECFM DSORG

Common data sets: The following data sets are required to run any of the samples.

prefix.SAMPLE.DTCU 255 * VB PO

prefix.SAMPLE.JCL 80 * FB PO

prefix.SAMPLE.OBJ 80 3200 FB PO

prefix.SAMPLE.RUNLIB2 0 * U PO

prefix.SAMPLE.ZAPOBJ2 80 3200 FB PO

COBOL data sets: The following data sets are required to run the COBOL samples.

prefix.SAMPLE.COBOL 80 * FB PO

prefix.SAMPLE.COBOLST 133 * FBA PO

121 for OS/VS COBOL 12100 FBA PO

prefix.SAMPLE.LOADLIBP3 0 * U PO-E

prefix.SAMPLE.RUNLIBP3 0 * U PO-E

PL/I data sets: The following data sets are required to run the PL/I samples.

prefix.SAMPLE.PLI 80 * FB PO

prefix.SAMPLE.PLILST 137 for Enterprise PL/I for
z/OS and OS/390 Version
3 Release 2 and above

* VBA PO

132 for VisualAge PL/I
and Enterprise PL/I for
z/OS and OS/390 Version
3 Release 1

* VBA PO

125 for OS PL/I or PL/I
for MVS & VM

* VBA PO

C/C++ data sets: The following data sets are required to run the C/C++ samples.

prefix.SAMPLE.C 256 * VB PO

prefix.SAMPLE.CLST 137 * VBA PO

2. Not required for Enterprise COBOL for z/OS Version 5.

3. Required for Enterprise COBOL for z/OS Version 5.

© Copyright IBM Corp. 1992, 2014 39

Data set name LRECL BLKSIZE RECFM DSORG

Assembler data sets: The following data sets are required to run the assembler samples.

prefix.SAMPLE.ASM 80 * FB PO

prefix.SAMPLE.ASMLST 133 for High Level
Assembler

* FBA/M PO

137 for High Level
Assembler

* VBA/M PO

121 for Assembler H * FBA PO

Note: A value of * in the BLKSIZE column indicates that you can use any valid block size.

COBOL samples
This table lists the members of the sample library SEQASAMP for the COBOL
sample. Before you run the sample, allocate the personal sample data sets that are
shown in the table and copy the members that are appropriate for your system.

SEQASAMP
member name Your sample data set Description of member

EQACU1C prefix.SAMPLE.DTCU(COB01) Coverage Utility control cards

EQACU1T prefix.SAMPLE.DTCU(COB01) Coverage Utility control cards for Enterprise
COBOL for z/OS Version 5

EQACU1GM prefix.SAMPLE.JCL(GCOB01) Go JCL, COBOL for MVS & VM

EQACU1GO prefix.SAMPLE.JCL(GCOB01) Go JCL, OS/VS COBOL

EQACU1GT prefix.SAMPLE.JCL(GCOB01) GO JCL, Enterprise COBOL for z/OS Version 5

EQACU1GZ prefix.SAMPLE.JCL(GCOB01) Go JCL, Enterprise COBOL for z/OS and OS/390
and Enterprise COBOL for z/OS V4

EQACU1G2 prefix.SAMPLE.JCL(GCOB01) Go JCL, VS COBOL II

EQACU1G9 prefix.SAMPLE.JCL(GCOB01) Go JCL, COBOL for OS/390 & VM

EQACU1LM prefix.SAMPLE.JCL(LCOB01) Link JCL COBOL for MVS & VM

EQACU1LO prefix.SAMPLE.JCL(LCOB01) Link JCL, OS/VS COBOL

EQACU1LT prefix.SAMPLE.JCL(LCOB01) Link JCL, Enterprise COBOL for z/OS Version 5

EQACU1LZ prefix.SAMPLE.JCL(LCOB01) Link JCL, Enterprise COBOL for z/OS and OS/390
and Enterprise COBOL for z/OS V4

EQACU1L2 prefix.SAMPLE.JCL(LCOB01) Link JCL, VS COBOL II

EQACU1L9 prefix.SAMPLE.JCL(LCOB01) Link JCL, COBOL for OS/390 & VM

EQACU1MM prefix.SAMPLE.JCL(COMPCOB) Compile JCL, COBOL for MVS & VM

EQACU1MO prefix.SAMPLE.JCL(COMPCOB) Compile JCL, OS/VS COBOL

EQACU1MT prefix.SAMPLE.JCL(COMPCOB) Compile JCL, Enterprise COBOL for z/OS Version
5

EQACU1MZ prefix.SAMPLE.JCL(COMPCOB) Compile JCL, Enterprise COBOL for z/OS and
OS/390 and Enterprise COBOL for z/OS V4

EQACU1M2 prefix.SAMPLE.JCL(COMPCOB) Compile JCL, VS COBOL II

EQACU1M9 prefix.SAMPLE.JCL(COMPCOB) Compile JCL, COBOL for OS/390 & VM

40 Debug Tool V13.1 Coverage Utility User's Guide and Messages

SEQASAMP
member name Your sample data set Description of member

EQACU1SA prefix.SAMPLE.COBOL(COB01A) COBOL source code

EQACU1SB prefix.SAMPLE.COBOL(COB01B)

EQACU1SC prefix.SAMPLE.COBOL(COB01C)

EQACU1SD prefix.SAMPLE.COBOL(COB01D)

PL/I samples
This table lists the members of the sample library SEQASAMP for the PL/I
sample. Before you run the sample, allocate the personal sample data sets that are
shown in the table and copy the members that are appropriate for your system.

SEQASAMP
member name Your sample data set Description of member

EQACU2C prefix.SAMPLE.DTCU(PLI01) Coverage Utility control cards

EQACU2GV prefix.SAMPLE.JCL(GPLI01) Go JCL, VisualAge PL/I

EQACU2GM prefix.SAMPLE.JCL(GPLI01) Go JCL, PL/I for MVS & VM

EQACU2GZ prefix.SAMPLE.JCL(GPLI01) Go JCL, Enterprise PL/I for z/OS and
OS/390 and Enterprise COBOL for z/OS

EQACU2G1 prefix.SAMPLE.JCL(GPLI01) Go JCL, PL/I 1.5.1

EQACU2G2 prefix.SAMPLE.JCL(GPLI01) Go JCL, PL/I 2.3.0

EQACU2LV prefix.SAMPLE.JCL(LPLI01) Link JCL, VisualAge PL/I

EQACU2LM prefix.SAMPLE.JCL(LPLI01) Link JCL, PL/I for MVS & VM

EQACU2LZ prefix.SAMPLE.JCL(GPLI01) Link JCL, Enterprise PL/I for z/OS and
OS/390 and Enterprise COBOL for z/OS

EQACU2L1 prefix.SAMPLE.JCL(LPLI01) Link JCL, PL/I 1.5.1

EQACU2L2 prefix.SAMPLE.JCL(LPLI01) Link JCL, PL/I 2.3.0

EQACU2MV prefix.SAMPLE.JCL(COMPPLI) Compile JCL, VisualAge PL/I

EQACU2MM prefix.SAMPLE.JCL(COMPPLI) Compile JCL, PL/I for MVS & VM

EQACU2MZ prefix.SAMPLE.JCL(GPLI01) Compile JCL, Enterprise PL/I for z/OS
and OS/390 and Enterprise COBOL for
z/OS

EQACU2M1 prefix.SAMPLE.JCL(COMPPLI) Compile JCL, PL/I 1.5.1

EQACU2M2 prefix.SAMPLE.JCL(COMPPLI) Compile JCL, PL/I 2.3.0

EQACU2SA prefix.SAMPLE.PLI(PLI01A) PL/I source code

EQACU2SB prefix.SAMPLE.PLI(PLI01B)

EQACU2SC prefix.SAMPLE.PLI(PLI01C)

EQACU2SD prefix.SAMPLE.PLI(PLI01D)

Chapter 4. Samples that are provided with Coverage Utility 41

C/C++ samples
This table lists the members of the sample library SEQASAMP for the C/C++
sample. Before you run the sample, allocate the personal sample data sets that are
shown in the table and copy the members that are appropriate for your system.

SEQASAMP
member name Your sample data set Description of member

EQACU3C prefix.SAMPLE.DTCU(C01) Coverage Utility control cards

EQACU3GA prefix.SAMPLE.JCL(GC01) Go JCL, OS/390 C

EQACU3LA prefix.SAMPLE.JCL(LC01) Link JCL, OS/390 C

EQACU3MA prefix.SAMPLE.JCL(COMPC) Compile JCL, OS/390 C

EQACU3SA prefix.SAMPLE.C(C01A) OS/390 C source code

EQACU3SB prefix.SAMPLE.C(C01B)

EQACU3SC prefix.SAMPLE.C(C01C)

EQACU3SD prefix.SAMPLE.C(C01D)

Assembler samples
This table lists the members of the sample library SEQASAMP for the Assembler
sample. Before you run the sample, allocate the personal sample data sets that are
shown in the table and copy the members that are appropriate for your system.

SEQASAMP
member name Your sample data set Description of member

EQACU4C prefix.SAMPLE.DTCU(ASM01) Coverage Utility control cards

EQACU4GH prefix.SAMPLE.JCL(GASM01) Go JCL, Assembler H

EQACU4GL prefix.SAMPLE.JCL(GASM01) Go JCL, High Level Assembler

EQACU4LH prefix.SAMPLE.JCL(LASM01) Link JCL, Assembler H

EQACU4LL prefix.SAMPLE.JCL(LASM01) Link JCL, High Level Assembler

EQACU4MH prefix.SAMPLE.JCL(COMPASM) Compile JCL, Assembler H

EQACU4ML prefix.SAMPLE.JCL(COMPASM) Compile JCL, High Level Assembler

EQACU4SA prefix.SAMPLE.ASM(ASM01A) Assembler source code

EQACU4SB prefix.SAMPLE.ASM(ASM01B)

EQACU4SC prefix.SAMPLE.ASM(ASM01C)

EQACU4SD prefix.SAMPLE.ASM(ASM01D)

42 Debug Tool V13.1 Coverage Utility User's Guide and Messages

Part 3. Preparing to monitor a program

This information helps you learn how to use the Coverage Utility control file to
describe the compile units that you want to be analyzed. The description and
function of each statement in the control file is given, together with examples. In
this part, you also learn which compiler options to use when compiling your
source programs, how to instrument object or load modules with breakpoints, and
how to set up Coverage Utility to monitor your programs.

© Copyright IBM Corp. 1992, 2014 43

44 Debug Tool V13.1 Coverage Utility User's Guide and Messages

Chapter 5. Describing the compile units to be analyzed

This section describes the function of the Coverage Utility control file and how you
can use it to describe the compile units that you want to be analyzed.
v “Editing a control file”
v “Contents of the control file” on page 46
v “Syntax of control file statements” on page 47
v “Examples: Control files” on page 56

You need to create a separate control file for each group of programs that you
want to process.

Editing a control file
To edit the control file, do the following steps:
1. Select option 1 from the Debug Tool Coverage Utility panel to display the Work

with the Control File panel, shown here:

2. Enter option 1 and change the values for Control File Dsn and Listing Type as
appropriate.
The options and fields for the panel are as follows:

Edit Starts an edit session for the control file that you specify in the Control
File Dsn field.

Reset Replaces the information in the Control File that you specify in the
Control File Dsn field with information from the site sample control
file.

Use Program Name for File Name
Enter YES if you want to construct the data set names from the default
high-level qualifier, the specified program name, and the default
low-level qualifier for each data set.

When you press Enter, the file names on the panel are changed
automatically. Coverage Utility usually constructs the data set names by
using the program name.

Program Name
The name to use for Coverage Utility data sets when you enter YES in

-------------------------- Work with the Control File -------------------------
Option ===>

1 Edit Edit Control File
2 Reset Reset Control File from Site Master

Enter END to Terminate

Use Program Name for File Name YES (Yes|No) Program Name COB01

Control File:
Control File Dsn. . . ’YOUNG.SAMPLE.DTCU(COB01)’
Listing Type. COBOL (COBOL|PL/I|C|ASM)

© Copyright IBM Corp. 1992, 2014 45

the Use Program Name for File Name field. This name can be any
valid name; it does not have to be the name of any of your programs.

Names of the following forms are created:
v Sequential data sets:

’proj_qual.program_name.file_type’

For example: 'YOUNG.SAMPLE.COB01.BRKTAB'
v Partitioned data sets:

’proj_qual.file_type(program_name)’

For example: 'YOUNG.SAMPLE.BRKTAB(COB01)'

Control file Dsn
The name of the control file data set to be used.

Listing Type
The type of Coverage Utility control card template that is retrieved
from hi_lev_qual.SEQASAMP if you select Reset or if you select Edit and
the data set or member in the Control File Dsn field does not exist:
v COBOL
v PL/I or PLI
v C or C++ or CPP (all are equivalent to Coverage Utility)
v ASM

3. Press Enter.
An ISPF edit session for the data set that you identified is displayed. If the data
set did not previously exist, it is created with comments to help you enter the
appropriate information in the fields.

4. Edit the control file to include all programs that you want to be monitored in
this session.

5. Press the End key (PF3) to save your information and exit the edit session.

Contents of the control file
The control file consists of a series of statements that specify information about the
desired coverage:
v The INCLUDE statement. This statement enables control statements in a separate

data set to be processed as if they were a part of the current data set. The
operand of the INCLUDE statement must specify either:
– The data set name of the file to be included
– The DD name of a previously allocated file that is to be included

v The DEFAULTS statement. This statement enables defaults to be set for certain
keywords on subsequent COBOL, PL/I, C, C++, and ASM statements.

v The compilation unit (COBOL, PL/I, C, C++, or ASM) statement. This statement
provides the following information:
– The type of listing file (COBOL, PL/I, C, C++, and ASM)
– The name of the data set that contains the compiler listing of the compilation

unit of interest.
– The name of the load module that contains the code from the listing
– The data set that contains either the object code generated by the compiler or

the load module created by the linker/binder
– The data set that is to contain either the instrumented object code generated

by the setup job or the instrumented load module generated by the setup job

46 Debug Tool V13.1 Coverage Utility User's Guide and Messages

If breakpoints are placed in object modules, specify a compilation unit only once in
a control file. If the compilation unit is link-edited into more than one load
module, list it for just one of the load modules.

Within a control file, each compilation unit should contain a unique external
program name
v For COBOL, PROGRAM-ID
v For PL/I except for VisualAge PL/I, Enterprise PL/I for z/OS and OS/390, and

Enterprise PL/I for z/OS, external procedure name
v For VisualAge PL/I, Enterprise PL/I for z/OS and OS/390, and Enterprise PL/I

for z/OS, listing data set name
v For C/C++, listing data set name
v For assembler, CSECT name.

“Examples: Control files” on page 56
Related references
Appendix C, “DBCS support,” on page 193

Syntax of control file statements
The syntax of all control statements that are used in the control file follows the
same general rules:
v Statements are free-form (not column dependent).
v An asterisk in column 1 indicates a comment.
v Two consecutive slashes (//) indicate that the rest of the line after the two

slashes is a comment.
v Lines that contain nothing but blanks are ignored.
v Keywords and operands can be coded in any combination of uppercase and

lowercase characters.
v Operands can appear in any order.
v Operands must be separated by a comma.
v One or more blanks can appear between keywords and the corresponding equal

sign, the equal sign and the operand, and the operand and the following
comma.

v The order of statements is not significant except that:
– All labels must be defined before they are referenced.
– The DEFAULTS statement is position-dependent; it applies only to the

statements that follow it.
– The default value for some operands is the previous statement of the proper

type.
v Statements can be continued by interrupting the line after a comma and

continuing the statement on the next line.
v Labels, if present, are specified before the statement name and must be

immediately followed by a colon. Labels cannot contain embedded blanks,
commas, parentheses, or equal signs.

v Labels that are specified on COBOL, PL/I, C, C++, and ASM statements cannot
be repeated on any of those statements.

v Operands that are shown in the syntax diagrams as being enclosed in
parentheses, do not have to be enclosed in parentheses if the operand contains
no embedded blanks or commas.

Chapter 5. Creating a control file 47

INCLUDE statement
The INCLUDE statement can be used to include information from another control
file. When such a control file is included, all statements are processed as if they
were in the original control file.

��
label:

INCLUDE DSNAME=dsname
DDNAME=ddname

��

dsname
Data set name of the Coverage Utility control file to be included.

ddname
A DD name that has been previously allocated to a Coverage Utility control
file.

DEFAULTS statement
The DEFAULTS statement specifies defaults to be used for certain keywords on
subsequent COBOL, PL/I, C, C++, and ASM statements.

If a COBOL, PL/I, C, C++, or ASM statement that does not specify a keyword is
encountered, and the statement was preceded by a DEFAULTS statement that
specified the keyword, the value specified on the DEFAULTS statement is used. If
more than one DEFAULTS statement is found, the last DEFAULTS statement that
specified the keyword in question is used.

�� DEFAULTS
LISTDSN=listdsname, LOADMOD=membername,

�

�
FROMOBJDSN=fromobjdsn , FVU
FROMLOADDSN=fromloaddsn

�

�
TOOBJDSN=toobjdsn TVU
TOLOADDSN=toloaddsn

��

FVU:

FROMVOL=fromvol,FROMUNIT=fromunit,

TVU:

,TOVOL=tovol,TOUNIT=tounit

listdsname
The name of the data set that contains the compiler listing for this compilation
unit. If listdsname is specified on the DEFAULTS statement, an asterisk must be
specified as the member name if the data set is partitioned or as one of the
qualifiers if the data set is sequential. If LISTDSN= is not specified on a
subsequent COBOL, PL/I, C, C++, or ASM statement, the LISTMEMBER=
operand must be specified. In this case the LISTMEMBER= operand will be
used to replace the asterisk to create the name to be used for that statement.

48 Debug Tool V13.1 Coverage Utility User's Guide and Messages

membername
The name of the load module that contains this compilation unit.

fromobjdsn
The data set name of the partitioned data set that contains the object generated
by the compiler for this compilation unit.

This is not applicable for Enterprise COBOL for z/OS Version 5.

fromloaddsn
The data set name of the partitioned data set that contains the load module
generated by the linker/binder. This is not applicable for VisualAge PL/I
Version 2 Release 2, Enterprise PL/I for z/OS and OS/390, and Enterprise
PL/I for z/OS.

fromvol
The volume that contains the fromobjdsn or fromloaddsn data set if it is not
cataloged.

fromunit
The unit specification for the fromobjdsn or fromloaddsn data set if it is not
cataloged.

toobjdsn
The data set name of the partitioned data set that will contain the
instrumented object created by setup for this compilation unit.

This is not applicable for Enterprise COBOL for z/OS Version 5.

toloaddsn
The data set name of the partitioned data set that will contain the
instrumented load module generated by setup. This is not applicable for
VisualAge PL/I Version 2 Release 2, Enterprise PL/I for z/OS and OS/390 and
Enterprise PL/I for z/OS.

tovol
The volume that contains the toobjdsn or toloaddsn data set if it is not cataloged.

tounit
The unit specification for the toobjdsn or toloaddsn data set if it is not cataloged.

COBOL statement (compilation unit definition)
The COBOL statement identifies a COBOL compilation unit.

The syntax of the COBOL statement is:

��
label:

COBOL LISTDSN = listdsname ,
LISTMEMBER=listmember,

�

� LOADMOD=membername, �

� FROMOBJDSN=fromobjdsn, FVU TOOBJDSN=toobjdsn TVU
OBJMEMBER=objmem,

TOLOADDSN=toloaddsn TVU
FROMLOADDSN=fromloaddsn, FVU

��

FVU:

FROMVOL=fromvol,FROMUNIT=fromunit,

Chapter 5. Creating a control file 49

TVU:

,TOVOL=tovol,TOUNIT=tounit

label
A label that can be used to refer to this statement in subsequent statements.

listdsname
The name of the data set that contains the compiler listing for this compilation
unit.

listmember
The member name to be substituted for an asterisk specification in the
listdsname. This operand is usually specified only when the LISTDSN operand
is specified on the DEFAULTS statement.

membername
The name of the load module (member name) that contains this compilation
unit.

fromobjdsn
The data set name of the partitioned data set that contains the object modules
generated by the compiler.

This is not applicable for Enterprise COBOL for z/OS Version 5.

fromloaddsn
The data set name of the partitioned data set that contains the load module
generated by the linker/binder.

fromvol
The volume that contains the fromobjdsn or fromloaddsn data set if it is not
cataloged.

fromunit
The unit specification for the fromobjdsn or fromloaddsn data set if it is not
cataloged.

objmem
The member name in the fromobjdsn for the object for this compilation unit. If
fromobjdsn is specified and this operand is not specified, LISTMEMBER must
be specified. In this case, the member name that is specified as listmember is
used for objmem.

toobjdsn
The data set name of the partitioned data set that will contain the modified
object modules generated by setup.

This is not applicable for Enterprise COBOL for z/OS Version 5.

toloaddsn
The data set name of the partitioned data set that will contain the
instrumented load module generated by setup.

tovol
The volume that contains the toobjdsn or toloaddsn data set if it is not cataloged.

tounit
The unit specification for the toobjdsn or toloaddsn data set if it is not cataloged.

50 Debug Tool V13.1 Coverage Utility User's Guide and Messages

In a set of control cards you can process either object modules or load modules,
but not both. Thus, the FROMOBJDSN and FROMLOADDSN keywords are
mutually exclusive, as are the TOOBJDSN and TOLOADDSN keywords.

If TOOBJDSN is coded, then FROMOBJDSN is required.

If TOLOADDSN is coded, FROMLOADDSN is optional. If FROMLOADDSN is
omitted, its value defaults to the value that is specified for TOLOADDSN and,
hence, the load module will be modified in the data set where it is currently
located.

The fromloaddsn load module can be coded as an * to nullify the FROMLOADDSN
specification on a previous DEFAULTS statement.

EQACUZPP is used to instrument breakpoints in a load module. It is invoked
when either the membername or toloaddsn changes, or when the last control card is
processed.

PL/I statement (compilation unit definition)
The PL/I statement identifies a PL/I compilation unit.

The syntax of the PL/I statement is:

��
label:

PL/I
PLI

LISTDSN = listdsname ,
LISTMEMBER=listmember,

LOADMOD = �

� membername , �

� FROMOBJDSN=fromobjdsn, FVU TOOBJDSN=toobjdsn TVU
OBJMEMBER=objmem,

TOLOADDSN=toloaddsn TVU
FROMLOADDSN=fromloaddsn, FVU

��

FVU:

FROMVOL=fromvol,FROMUNIT=fromunit,

TVU:

,TOVOL=tovol,TOUNIT=tounit

label
A label that can be used to refer to this statement in subsequent statements.

listdsname
The name of the data set that contains the compiler listing for this compilation
unit.

listmember
The member name to be substituted for an asterisk specification in the
listdsname. This operand would usually be specified only when the LISTDSN
operand is specified on the DEFAULTS statement.

Chapter 5. Creating a control file 51

membername
The name of the load module (member name) that contains this compilation
unit.

fromobjdsn
The data set name of the partitioned data set that contains the object modules
generated by the compiler.

fromloaddsn
The data set name of the partitioned data set that contains the load module
generated by the linker/binder. This is not applicable for VisualAge PL/I
Version 2 Release 2, Enterprise PL/I for z/OS and OS/390 and Enterprise PL/I
for z/OS.

fromvol
The volume that contains the fromobjdsn or fromloaddsn data set if it is not
cataloged.

fromunit
The unit specification for the fromobjdsn or fromloaddsn data set if it is not
cataloged.

objmem
The member name in the fromobjdsn for the object for this compilation unit. If
fromobjdsn is specified and this operand is not specified, LISTMEMBER must
be specified. In this case, the member name specified as listmember is used for
objmem.

toobjdsn
The data set name of the partitioned data set that will contain the modified
object modules generated by setup.

toloaddsn
The data set name of the partitioned data set that will contain the
instrumented load module generated by setup. This is not applicable for
VisualAge PL/I Version 2 Release 2, Enterprise PL/I for z/OS and OS/390 and
Enterprise PL/I for z/OS.

tovol
The volume that contains the toobjdsn or toloaddsn data set if it is not cataloged.

tounit
The unit specification for the toobjdsn or toloaddsn data set if it is not cataloged.

In a set of control cards you can process either object modules or load modules,
but not both. Thus, the FROMOBJDSN and FROMLOADDSN keywords are
mutually exclusive, as are the TOOBJDSN and TOLOADDSN keywords.

If TOOBJDSN is coded, then FROMOBJDSN is required.

If TOLOADDSN is coded, FROMLOADDSN is optional. If FROMLOADDSN is
omitted, its value defaults to the value specified for TOLOADDSN and, hence, the
load module will be modified in the data set in which it is currently located.

The fromloaddsn load module can be coded as an * to nullify the FROMLOADDSN
specification on a previous DEFAULTS statement.

EQACUZPP is used to instrument breakpoints in a load module. It is invoked
when either the membername or toloaddsn changes, or when the last control card is
processed.

52 Debug Tool V13.1 Coverage Utility User's Guide and Messages

C statement (compilation unit definition)
The C statement identifies a C or C++ program compilation unit. Although C, C++,
or CPP can be specified, all of these are equivalent. Coverage Utility makes no
distinction between processing C and C++ code.

The syntax of the C statement is:

��
label:

C
C++
CPP

LISTDSN = listdsname ,
LISTMEMBER=listmember,

LOADMOD = �

� membername , �

� FROMOBJDSN=fromobjdsn, FVU TOOBJDSN=toobjdsn TVU
OBJMEMBER=objmem,

TOLOADDSN=toloaddsn TVU
FROMLOADDSN=fromloaddsn, FVU

��

FVU:

FROMVOL=fromvol,FROMUNIT=fromunit,

TVU:

,TOVOL=tovol,TOUNIT=tounit

label
A label that can be used to refer to this statement in subsequent statements.

listdsname
The name of the data set that contains the compiler listing for this compilation
unit.

listmember
The member name to be substituted for an asterisk specification in the
listdsname. This operand is usually specified only when the LISTDSN operand
is specified on the DEFAULTS statement.

membername
The name of the load module (member name) that contains this compilation
unit.

fromobjdsn
The data set name of the partitioned data set that contains the object modules
generated by the assembler.

fromloaddsn
The data set name of the partitioned data set that contains the load module
generated by the linker/binder. If fromloaddsn is specified, the CSECT compiler
option or a #pragma CSECT(CODE,...) must have been used to create a CODE
CSECT name of no more than eight alphanumeric uppercase characters.

fromvol
The volume that contains the fromobjdsn or fromloaddsn data set if it is not
cataloged.

Chapter 5. Creating a control file 53

fromunit
The unit specification for the fromobjdsn or fromloaddsn data set if it is not
cataloged.

objmem
The member name in the fromobjdsn for the object for this compilation unit. If
fromobjdsn is specified and this operand is not specified, LISTMEMBER must
be specified. In this case, the member name that is specified as listmember is
used for objmem.

toobjdsn
The data set name of the partitioned data set that will contain the modified
object modules generated by setup.

toloaddsn
The data set name of the partitioned data set that will contain the
instrumented load module generated by setup.

tovol
The volume that contains the toobjdsn or toloaddsn data set if it is not cataloged.

tounit
The unit specification for the toobjdsn or toloaddsn data set if it is not cataloged.

In a set of control cards you can process either object modules or load modules,
but not both. Thus, the FROMOBJDSN and FROMLOADDSN keywords are
mutually exclusive, as are the TOOBJDSN and TOLOADDSN keywords.

If TOOBJDSN is coded, then FROMOBJDSN is required.

If TOLOADDSN is coded, FROMLOADDSN is optional. If FROMLOADDSN is
omitted, its value defaults to the value that is specified for TOLOADDSN and,
hence, the load module will be modified in the data set in which it is currently
located.

The fromloaddsn load module can be coded as an * to nullify the FROMLOADDSN
specification on a previous DEFAULTS statement.

EQACUZPP is used to instrument breakpoints in a load module. It is invoked
when either the membername or toloaddsn changes, or when the last control card is
processed.

ASM statement (compilation unit definition)
The ASM statement identifies an assembler program compilation unit.

The syntax of the ASM statement is:

��
label:

ASM LISTDSN = listdsname ,
LISTMEMBER=listmember,

LOADMOD = �

� membername , �

� FROMOBJDSN=fromobjdsn, FVU TOOBJDSN=toobjdsn TVU
OBJMEMBER=objmem,

TOLOADDSN=toloaddsn TVU
FROMLOADDSN=fromloaddsn, FVU

��

54 Debug Tool V13.1 Coverage Utility User's Guide and Messages

FVU:

FROMVOL=fromvol,FROMUNIT=fromunit,

TVU:

,TOVOL=tovol,TOUNIT=tounit

label
A label that can be used to refer to this statement in subsequent statements.

listdsname
The name of the data set that contains the assembler listing for this
compilation unit.

listmember
The member name to be substituted for an asterisk specification in the
listdsname. This operand is usually specified only when the LISTDSN operand
is specified on the DEFAULTS statement.

membername
The name of the load module (member name) that contains this compilation
unit.

fromobjdsn
The data set name of the partitioned data set that contains the object modules
generated by the assembler.

fromloaddsn
The data set name of the partitioned data set that contains the load module
generated by the linker/binder.

fromvol
The volume that contains the fromobjdsn or fromloaddsn data set if it is not
cataloged.

fromunit
The unit specification for the fromobjdsn or fromloaddsn data set if it is not
cataloged.

objmem
The member name in the fromobjdsn for the object for this compilation unit. If
fromobjdsn is specified and this operand is not specified, LISTMEMBER must
be specified. In this case, the member name that is specified as listmember is
used for objmem.

toobjdsn
The data set name of the partitioned data set that will contain the modified
object modules generated by setup.

toloaddsn
The data set name of the partitioned data set that will contain the
instrumented load module generated by setup.

tovol
The volume that contains the toobjdsn or toloaddsn data set if it is not cataloged.

tounit
The unit specification for the toobjdsn or toloaddsn data set if it is not cataloged.

Chapter 5. Creating a control file 55

In a set of control cards you can process either object modules or load modules,
but not both. Thus, the FROMOBJDSN and FROMLOADDSN keywords are
mutually exclusive, as are the TOOBJDSN and TOLOADDSN keywords.

If TOOBJDSN is coded, then FROMOBJDSN is required.

If TOLOADDSN is coded, FROMLOADDSN is optional. If FROMLOADDSN is
omitted, its value defaults to the value that is specified for TOLOADDSN and,
hence, the load module will be modified in the data set where it is currently
located.

The fromloaddsn load module can be coded as an * to nullify the FROMLOADDSN
specification on a previous DEFAULTS statement.

EQACUZPP is used to instrument breakpoints in a load module. It is invoked
when either the membername or toloaddsn changes, or when the last control card is
processed.

Examples: Control files
The following examples show how you might use these statements.

Example: Control file for a single compilation unit
This example shows a typical control file where you request coverage for a single
compilation unit.
Cobol ListDsn=YOUNG.SAMPLE.Cobolst(Cob01),

LoadMod=Cob01,
FromObjDsn=YOUNG.SAMPLE.Obj,
ToObjDsn=YOUNG.SAMPLE.ZapObj

Example: Control file for multiple compilation units
This example shows a typical control file where you request coverage for multiple
compilation units.

Defaults ListDsn=YOUNG.SAMPLE.Cobolst(*),
LoadMod=Cob01,
FromObjDsn=YOUNG.SAMPLE.Obj,
ToObjDsn=YOUNG.SAMPLE.ZapObj

*
Cobol ListMember=Cob01A
Cobol ListMember=Cob01B
Cobol ListMember=Cob01C
Cobol ListMember=Cob01D

Example: Control file for load module
This example shows a typical control file where you request coverage for multiple
compilation units and where breakpoints are to be placed directly into a load
module (rather than into object modules):

Defaults ListDsn=YOUNG.SAMPLE.Cobolst(*),
LoadMod=Cob01,
FromLoadDsn=YOUNG.SAMPLE.LOADLIB,
ToLoadDsn=YOUNG.SAMPLE.RUNLIB

*
Cobol ListMember=Cob01A
Cobol ListMember=Cob01B
Cobol ListMember=Cob01C
Cobol ListMember=Cob01D

56 Debug Tool V13.1 Coverage Utility User's Guide and Messages

Chapter 6. Preparing to monitor a program

This section describes the steps that you need to perform to prepare a program to
be monitored. This function is called setup.
v “Supplying setup input”
v “Instrumenting object modules or load modules” on page 59
v “Creating the setup JCL by using the panels” on page 60
v “Determining when to create or submit setup JCL” on page 61
v “Compiler options required by Coverage Utility” on page 61
v “Compiler restrictions imposed by Coverage Utility” on page 64
v “Setup JCL for the compile job stream” on page 66
v “Parameters for the setup programs” on page 66

Supplying setup input
The setup process uses assembler statements from the listings produced by the
compiler to determine where to place breakpoints.

Prepare the following items for setup:
v A Coverage Utility control file.
v Compiler listings with assembler statements included.
v Object modules. Either object modules or load modules are required.

– The original object modules that are created at the source compile step.
– An object library (allocated like the original) to receive the new object

modules after the object modules are modified with breakpoints.

Note: Applying breakpoints to object modules is not supported for Enterprise
COBOL for z/OS Version 5.

v Load modules. Either object modules or load modules are required.
– The original load modules that are created at the link-edit step.
– A load module library (allocated like the original) to receive the new load

modules after the load modules are modified with breakpoints.

Note: Applying breakpoints to load modules is not supported for VisualAge
PL/I, Enterprise PL/I for z/OS and OS/390, or Enterprise PL/I for z/OS.

Modify this information as necessary in the control file.
Related concepts
“Setup processing” on page 58
Related tasks
Chapter 5, “Describing the compile units to be analyzed,” on page 45
Related references
“Restrictions on setup input” on page 58
“Instrumenting object modules or load modules” on page 59
“Compiler options required by Coverage Utility” on page 61
“Compiler restrictions imposed by Coverage Utility” on page 64

© Copyright IBM Corp. 1992, 2014 57

Setup processing
Setup creates a breakpoint table (BRKTAB) and uses it together with the object
module that is created at compile time to create a new object module that contains
the breakpoint data. After the breakpoints have been inserted into the object
module or modules, link-edit the object modules into the executable load module.
Alternatively, the setup job can insert breakpoints directly into load modules.

The steps involved in the setup procedure for Coverage Utility are shown in the
following figure.

DD names: The names outside the box in the figure (for example, LISTINP)
correspond to the DD names for the listings.

Restrictions on setup input
The following restrictions apply to the input to setup:
v Each listing can contain one assembly. If you want only a summary report of

code coverage, you can discard the compiler listings after the setup step.
v Coverage Utility does not support inserting breakpoints into self-modifying

code.
v Within a control file, each compilation unit should contain a unique external

program name as follows:
– PROGRAM-ID for COBOL
– External procedure name, for PL/I except for VisualAge PL/I, Enterprise

PL/I for z/OS and OS/390, and Enterprise PL/I for z/OS
– Listing data set name, for C/C++, VisualAge PL/I, Enterprise PL/I for z/OS

and OS/390, and Enterprise PL/I for z/OS
– CSECT name, for assembler

User
program
listings

BRKTAB
breakpoints table

used during
execution

Instrumented load
modules or

instrumented object
modules

Load modules
or object
modules

Setup

LISTINB/P/A

58 Debug Tool V13.1 Coverage Utility User's Guide and Messages

Instrumenting object modules or load modules
You can instrument breakpoints into your object modules before you link them
into an executable load module, or you can instrument breakpoints into the
executable load module. Instrumentation of load modules is useful when
instrumenting object modules is difficult, because the link step is built into your
standard location-wide build procedures.

Instrumenting object modules is not supported for Enterprise COBOL for z/OS
Version 5.

Instrumenting load modules is not supported for VisualAge PL/I Version 2 Release
2, Enterprise PL/I for z/OS® and OS/390®, or Enterprise PL/I for z/OS.

The samples that are shipped with Coverage Utility show you how to instrument
object modules. To instrument object modules for the COB01 test case, use the
following control file:

Defaults ListDsn=YOUNG.SAMPLE.COBOLST(*),
LoadMod=COB01,
FromObjDsn=YOUNG.SAMPLE.OBJ,
ToObjDsn=YOUNG.SAMPLE.ZAPOBJ

COB01A: COBOL ListMember=COB01A
COB01B: COBOL ListMember=COB01B
COB01C: COBOL ListMember=COB01C
COB01D: COBOL ListMember=COB01D

To instrument load modules, you must change the control file. All other steps
remain the same, except that you can skip the step that links the instrumented
object modules into a program to test.

For example, to instrument the load module for the COB01 test case, use the
following COBOL control file:

Defaults ListDsn=YOUNG.SAMPLE.COBOLST(*),
LoadMod=COB01,
FromLoadDsn=YOUNG.SAMPLE.LOADLIB,
ToLoadDsn=YOUNG.SAMPLE.RUNLIB

COB01A: COBOL ListMember=COB01A
COB01B: COBOL ListMember=COB01B
COB01C: COBOL ListMember=COB01C
COB01D: COBOL ListMember=COB01D

You do not use the FromObjDsn and ToObjDsn keywords that identify object module
libraries. Instead you use the FromLoadDsn and ToLoadDsn keywords. If you supply
both FromLoadDsn and ToLoadDsn keywords, the load module is read from the
FromLoadDsn data set and written to the ToLoadDsn data set after it has been
instrumented. If you supply only the ToLoadDsn keyword, the load module is
instrumented in place.

You cannot use both object module instrumentation (use of FromObjDsn and
ToObjDsn keywords) and load module instrumentation (FromLoadDsn and ToLoadDsn
keywords) in the same set of control cards. If load module instrumentation is used
for C/C++, the CSECT compiler option or #pragma CSECT(CODE,...) must be
specified during the compilation to create a CODE CSECT name of no more than
eight alphanumeric characters.

The instrumentation of the load module is done using the EQACUZPP program.

Chapter 6. Running setup 59

Related tasks
“Editing the sample control file” on page 21
Related references
“EQACUZPP” on page 69

Creating the setup JCL by using the panels
To create the setup JCL do the following steps:
1. Select option 2 from the Debug Tool Coverage Utility panel.

The Create JCL for Setup panel, shown below, is displayed.
2. Enter any information that you want to change, select option 1, and then press

Enter.

The options and fields in the panel are as follows. In most cases, you need to
change only the Program Name field, and then press Enter. The defaults for the
setup step are used.

Generate
Generates JCL using the parameters that you specify on the panel.

Edit Displays an ISPF edit session where you can change existing JCL.

Submit
Submits for execution the JCL that you specify in the JCL Dsn field on this
panel.

Use Program Name for File Name
Enter YES if you want to construct the data set names from the default
high-level qualifier, the specified program name, and the default low-level
qualifier for each data set.

When you press Enter, the file names on the panel are changed
automatically. Coverage Utility usually constructs the data set names by
using the program name.

Program Name
The name to use for Coverage Utility files when you enter YES in the Use

----------------------------- Create JCL for Setup ----------------------------
Option ===>

1 Generate Generate JCL from parameters
2 Edit Edit JCL
3 Submit Submit JCL

Enter END to Terminate

Use Program Name for File Name YES (Yes|No) Program Name COB01

Control File:
Control File Dsn. . . ’YOUNG.SAMPLE.DTCU(COB01)’

JCL Library and Member:
JCL Dsn ’YOUNG.SAMPLE.JCL(SCOB01)’

Output Breakpoint Table:
Breakpoint Table Dsn. ’YOUNG.SAMPLE.COB01.BRKTAB’

60 Debug Tool V13.1 Coverage Utility User's Guide and Messages

Program Name for File Name field. This name can be any valid name; it
does not need to be the name of any of your programs. Names of the
following form are created:
v Sequential data sets:

’proj_qual.program_name.file_type’

For example: 'YOUNG.SAMPLE.COB01.BRKTAB'
v Partitioned data sets:

’proj_qual.file_type(program_name)’

For example: 'YOUNG.SAMPLE.BRKTAB(COB01)'

Control File Dsn
The name of the control file data set that contains the names of the listing
files that you want to be annotated. If you want to edit the control file, you
can do so from the Work with the Control File panel.

JCL Dsn
The name of the JCL data set that contains the JCL for this action.

Default: If you set the Use Program Name for File Name field to YES,
then the member name or program name qualifier of the data set will be
Sxxxxxxx, where xxxxxxx is the last seven characters of the program name.

Breakpoint Table Dsn
The name of the BRKTAB data set that is created during setup and used by
the monitor program.

Determining when to create or submit setup JCL
You must run the setup JCL if you change your program (and consequently, the
listing).

If the test environment changes, you must recreate the setup JCL only . For
example, if you add or delete listings in the Coverage Utility control cards, recreate
the setup JCL from the panel, and run the new setup JCL. However, if you change
a listing, then submit the old setup JCL without changes.

Compiler options required by Coverage Utility
The following tables show the compiler options required by Coverage Utility for
each supported language and compiler. You can also use options in addition to
those shown.

COBOL compiler options required by Coverage Utility
The following table shows the COBOL compiler options that Coverage Utility
requires:

Compiler Required options

Enterprise COBOL for z/OS Version 5 4 SOURCE 1

LIST 2

OPTIMIZE(0)
NONUMBER

Chapter 6. Running setup 61

Compiler Required options

Enterprise COBOL for z/OS Version 4
Enterprise COBOL for z/OS and OS/390
COBOL for OS/390 & VM
COBOL for MVS & VM
VS COBOL II

SOURCE 1

LIST 2

OBJECT
NOOPTIMIZE
NONUMBER
LIB 3

OS/VS COBOL SOURCE
PMAP
OBJECT
NOLST
NOOPTIMIZE
NONUM
NOBATCH
NOTEST
NOFLOW
NOSYMDMP
NOCOUNT

1. You specify the *CBL (*CONTROL) NOSOURCE compiler-directing statement to
suppress printing of COBOL executable statements; these statements will not be
included in the annotated listing report.

2. You specifying the *CBL (*CONTROL) NOLIST compiler-directing statement to
suppress printing of the assembler code; Coverage Utility cannot insert breakpoints into
the suppressed assembler code.

3. The LIB compiler option is required by Coverage Utility only if you have multiple
source programs separated by CBL (PROCESS) compiler-directing statements.

4. Multiple source programs separated by CBL (PROCESS) compiler-directing statements
are not supported for Enterprise COBOL for z/OS Version 5.

PL/I compiler options required by Coverage Utility
The following table shows PL/I compiler options that Coverage Utility requires:

Compiler Required options

Enterprise PL/I for z/OS
Enterprise PL/I for z/OS and OS/390

SOURCE
LIST
OBJECT
NOSTMT
NOOPTIMIZE
NOBLKOFF5

NUMBER

VisualAge PL/I Version 2 Release 2 SOURCE
LIST
OBJECT
NOSTMT
NOINSOURCE 1

NOOFFSET
NOOPTIMIZE

PL/I for MVS & VM 3 SOURCE
LIST
OBJECT
NOOPTIMIZE
NOTEST or TEST(NONE) 2

62 Debug Tool V13.1 Coverage Utility User's Guide and Messages

Compiler Required options

PL/I 2.3.0 3 4 SOURCE
LIST
OBJECT
NOOPTIMIZE
NOTEST 2

NOCOUNT
NOFLOW

PL/I 1.5.1 3 4 SOURCE
LIST
OBJECT
NOOPTIMIZE
NOCOUNT
NOFLOW

1. Required only if you are running VisualAge PL/I 2.2.0 without APAR PQ40062.

2. Although NOTEST is recommended, you can use TEST. However, using TEST can
cause additional breakpoints to be created for the TEST hooks. These breakpoints can
vary depending on the TEST suboptions in effect. The additional breakpoints, if any,
will appear in the summary and annotation reports.

3. You specify the %NOPRINT statement to suppress printing of PL/I executable
statements; these statements will not be included in the annotated listing report
produced by Coverage Utility.

Multiple PL/I external source programs that are separated by *PROCESS statements are
not supported.

4. Coverage Utility requires that PTF PN49349 be applied to the IBM OS PL/I Optimizing
Compiler 2.3.0 to provide support for more than 9999 statements. The IBM PL/I
Optimizing Compiler 1.5.1 does not support more than 9999 statements.

5. Coverage Utility requires that PTF UQ71463 be applied to Enterprise PL/I for z/OS
and OS/390, Version 3 Release 1, or PTF UQ71704 be applied to Enterprise PL/I for
z/OS and OS/390, Version 3 Release 2, to provide support for the NOBLKOFF
compiler option.

C/C++ compiler options required by Coverage Utility
The following table shows C/C++ compiler options required by Coverage Utility:

Compiler Required options

OS/390 C/C++ compiler
CSECT 1, 2, 3

NOGOFF 4

INLINE or NOINLINE 5

NOIPA
LIST
NOOFFSET
OPTIMIZE or NOOPTIMIZE 5

SOURCE
NOTEST 6

Chapter 6. Running setup 63

Compiler Required options

1. You can use #pragma CSECT(CODE,...) instead of the CSECT compiler option.

2. The CSECT option is required only if you are applying breakpoints to the load module.
If you are applying breakpoints to the object modules only, the use of CSECT is
optional.

3. The CODE CSECT name must be no longer than eight alphanumeric characters.

4. NOGOFF is required only if breakpoints are applied to object modules. It is not
required when breakpoints are applied to load modules.

5. Using the OPTIMIZE or INLINE options can change the summary statistics and
annotations produced by Coverage Utility.

6. Although NOTEST is recommended, you can use TEST. However, using TEST can
cause additional breakpoints to be created for the TEST hooks. These breakpoints can
vary depending on the TEST suboptions in effect. The additional breakpoints, if any,
will appear in the summary and annotation reports.

Related references
Chapter 12, “Report differences for optimized C/C++ code,” on page 131

Assembler options required by Coverage Utility
The following table shows assembler options required by Coverage Utility:

Assembler Required options

High Level Assembler
NOBATCH
ESD
NOGOFF or NOXOBJECT 1

LIST(121) 2OBJECT or DECK
PCONTROL(GEN,MSOURCE,ON)

Assembler H 3 NOBATCH
ESD
LIST
OBJECT or DECK

1. NOGOFF or NOXOBJECT is required only if breakpoints are applied to object modules.
It is not required when breakpoints are applied to load modules.

2. This option can be implied by LIST without operands (depending on the installation
options in effect).

3. You specify the PRINT assembler directive to suppress printing of executable
instructions or data;setup cannotinsert any breakpoints into the suppressed assembler
code.

If your code contains a branch whose target uses location counter relative
addressing, such as B *+20, then you should enable the Frequency Count Mode
flag for setup to get accurate summary and annotation information for the target
locations.

Related references
“Parameters for the setup programs” on page 66

Compiler restrictions imposed by Coverage Utility
The following sections describe certain compiler restrictions that are imposed by
Coverage Utility for programs to be monitored. These include listing attributes and
language constructs.

64 Debug Tool V13.1 Coverage Utility User's Guide and Messages

COBOL compiler restrictions imposed by Coverage Utility
Coverage Utility imposes the following restrictions on COBOL compilations:
v Each listing can have one external PROGRAM-ID and multiple internal

PROGRAM-IDs.
– For Enterprise COBOL for z/OS Version 4, Enterprise COBOL for z/OS and

OS/390, COBOL for OS/390 & VM, COBOL for MVS™ & VM, and VS
COBOL II, each paragraph is listed in the summary report as a separate
program area (PA). The PA name is the paragraph name.

– For Enterprise COBOL for z/OS Version 5, each PROGRAM-ID is listed in the
summary report as a separate program area (PA). The PA name is the
PROGRAM-ID name.

v The following compiler option should not be specified. It causes additional
annotations that might not show as executed, because the condition is not
normally raised. This might cause misleading code coverage statistics and
annotation.
- SSRANGE

v COBOL listings must have the following DCB attributes:

DSORG=PS or DSORG=PO
For all compilers.

RECFM=FBA
For all compilers.

LRECL=133
For Enterprise COBOL for z/OS, Enterprise COBOL for z/OS and
OS/390, COBOL for OS/390 & VM, COBOL for MVS & VM, and
VS COBOL II.

LRECL=121
For OS/VS COBOL.

PL/I compiler restrictions imposed by Coverage Utility
The following restrictions are imposed on PL/I compilations by Coverage Utility.
v Each listing can contain one external procedure, and multiple internal

procedures, ON-units, and BEGIN blocks. Each of these is listed in the summary
report as a separate program area (PA). The PA name is the name of the
procedure or labeled BEGIN block, or is a compiler-generated name or Coverage
Utility-generated name for ON-units and unlabeled BEGIN blocks.

v The following PL/I condition prefixes should not be enabled. These cause
additional annotations which might not show as executed because the conditions
are not normally raised. This might result in misleading code coverage statistics
and annotation.
– CHECK
– SIZE
– STRINGSIZE
– STRINGRANGE
– SUBSCRIPTRANGE

v All PL/I listings must have the following DCB attributes:
– DSORG=PO or DSORG=PS
– RECFM=VBA
– LRECL=125

For PL/I for MVS & VM, PL/I Version 2 Release 3, PL/I Version 1 Release 5
Mod 1

Chapter 6. Running setup 65

|
|

|

– LRECL=132
VisualAge PL/I Version 2 Release 2 or Enterprise PL/I for z/OS and OS/390
Version 3 Release 1

– LRECL=137
Enterprise PL/I for z/OS and OS/390 Version 3 Release 2 or later

For VisualAge PL/I, Enterprise PL/I for z/OS and OS/390, and Enterprise PL/I
for z/OS, breakpoints are set in the machine code that is generated from source
code in the primary input file only. Machine code that is generated as a result of
source code included in the compilation by a preprocessor INCLUDE statement is
not part of the by Coverage Utility analyzes.

C/C++ compiler restrictions imposed by Coverage Utility
The following restrictions are imposed on C/C++ compilations by Coverage Utility.
v All C/C++ listings must have the following DCB attributes:

– DSORG=PO or DSORG=PS
– RECFM=VBA
– LRECL=137

v For C/C++, breakpoints are set only in machine code that is generated from
source code in the primary input file. Machine code that is generated as a result
of source code included in the compilation by a preprocessor #include statement
is not part of the code that Coverage Utility analyzes. Therefore code that is
generated by instantiation of templates will not have breakpoints placed in it.

Assembler restrictions imposed by Coverage Utility
All ASM listings must have the following DCB attributes:
v DSORG=PO or DSORG=PS
v RECFM=FBM or FBA
v LRECL=133 for the High Level Assembler
v LRECL=121 for Assembler H

Setup JCL for the compile job stream
If you insert the JCL that creates setup output files into your compile job stream,
the setup output files are created and saved automatically whenever you change a
module and recompile.

You can create this JCL by generating the setup JCL from the Create JCL for Setup
panel, and then editing it to suit your needs.

Parameters for the setup programs
The setup programs are used to instrument user programs with breakpoints. The
setup programs that you use depend on whether you are instrumenting object
modules or load modules.

The following table shows the programs that are used in each of these situations:

Program Invoked once per Purpose

Object: If you are instrumenting object modules, you use the following setup programs:

EQACUSET Compilation unit To analyze listings and create the BRKTAB for
the compilation unit

66 Debug Tool V13.1 Coverage Utility User's Guide and Messages

Program Invoked once per Purpose

EQACUZPT Compilation unit To read the BRKTAB and instrument the object
module

Load: If you are instrumenting load modules, use the following setup programs:

EQACUSET Compilation unit To analyze listings and create the BRKTAB for
the compilation unit

EQACUZPL Compilation unit To read the BRKTAB and create or append
control statements for EQACUZPP

EQACUZPP Load module To read control statements that are created by
EQACUZPL and that instrument the load
module

The setup program input parameters are built automatically by the ISPF dialog.
Related references
Appendix B, “Resources and requirements,” on page 189

EQACUSET
This program analyzes the compiler listings to determine breakpoint placement.

The parameters are as follows:

�� LoadMod , LDFP , 'Listing_data_set_name' , 2-byte_SVC_# , �

� 4-byte_SVC_#
,common_parameters

��

LoadMod
The name of the load module that contains the Program Area (PA) or CSECT
name.

LDFP
This is a string of four characters with no embedded blanks. Each character
specifies a separate parameter in the following order:
v List_Type
v Debug_mode
v Frequency_count_mode
v Performance_mode

�� B
P
C
A

Y
N

Y
N

Y
N

��

List_Type
The type of listing.
B COBOL
P PL/I
C C/C++
A Assembler

Debug_mode
Specify whether to activate Debug Mode.

Frequency_count_mode
Specify whether to activate Frequency Count Mode.

Chapter 6. Running setup 67

The parameters Debug_mode and Frequency_count_mode work together.
Table 2 describes how to set these parameters to achieve specific results.

Table 2. Combinations of Debug_mode and Frequency_count_mode and the results of each
combination.

Debug_mode Frequency_count_mode Result

N (No) N (No) Default.

N (No) Y (Yes) Use this combination when you are analyzing
assembler code that uses location counter relative
branching; for example, B *+20.

Y (Yes) N (No) Use this combination only at the direction of
Coverage Utility support personnel.

Y (Yes) Y (Yes) Use this combination when you want to collect
frequency information.

Use this combination if users routinely instrument
the same subroutine for different Monitor sessions,
and run the subroutines and sessions
simultaneously. All users that meet this criteria
should use this combination.

Note: Enabling Debug_mode and Frequency_count_mode will significantly
degrade the performance of the monitored program.

Performance_mode
Use performance mode?
Y Conditional branch coverage is disabled.
N Conditional branch coverage is enabled.

Note: If users routinely instrument the same subroutine for different
Monitor sessions, and run the subroutines and sessions simultaneously, all
the users should select the same value for Performance_mode.

Listing_data_set_name
The name of the listing data set, delimited by apostrophes. If it is a PDS, you
must specify a member name using the form 'datasetname(member)'.

2-byte_SVC_#
SVC number, in hexadecimal notation, for inserting breakpoints into two-byte
instructions.

4-byte_SVC_#
SVC number, in hexadecimal notation, for inserting breakpoints into four- and
six-byte instructions.

common_parameters
Any of the parameters that are common to multiple routines, separated by
commas.

Related tasks
“Displaying execution counts in an annotated listing report” on page 124
“Using performance mode to reduce monitor overhead” on page 78
“Editing your user defaults” on page 10
Related references
“Assembler options required by Coverage Utility” on page 64
Appendix E, “Parameters that are common to multiple routines,” on page 205

68 Debug Tool V13.1 Coverage Utility User's Guide and Messages

EQACUZPT
The EQACUZPT program is used to insert breakpoints into object modules.

The parameters are as follows:

�� x
,common_parameters

��

x A number that indicates which BRKTAB in the BRKTAB data set to use.

common_parameters
Any of the parameters that are common to multiple routines, separated by
commas.

Related references
Appendix E, “Parameters that are common to multiple routines,” on page 205

EQACUZPL
The EQACUZPL program is used to build input for EQACUZPP to insert
breakpoints into load modules.

The parameters are as follows:

�� x
,LoadMod ,common_parameters

��

x A number that indicates which BRKTAB in the BRKTAB data set to use.

LoadMod
An optional parameter that contains the name of the load module to which the
breakpoints are applied. If specified, it overrides the load module name that is
stored in the BRKTAB (from setup).

common_parameters
Any of the parameters that are common to multiple routines, separated by
commas.

Related references
Appendix E, “Parameters that are common to multiple routines,” on page 205

EQACUZPP
The EQACUZPP program inserts breakpoints in user load modules. It takes an
input file (SYSIN) of commands that specify the breakpoints to be applied, reads
one or more input load modules or program objects from the LIBIN file, applies
the requested breakpoints, and writes the load modules or program objects to the
LIBOUT file. The input commands that EQACUZPP supports are a subset of those
supported by the AMASPZAP program.

This program requires no parameters. It accepts any of the parameters that are
common to multiple routines.
//LOADZAP EXEC PGM=EQACUZPP,PARM=’common_parameters’

common_parameters
Any of the parameters that are common to multiple routines, separated by
commas.

Related references
Appendix E, “Parameters that are common to multiple routines,” on page 205

Chapter 6. Running setup 69

Appendix B, “Resources and requirements,” on page 189

70 Debug Tool V13.1 Coverage Utility User's Guide and Messages

Part 4. Running a Coverage Utility monitor session

In this part of the document, learn the procedures for running a Coverage Utility
monitor session, including the parameters needed. Learn how to run multiple-user
sessions and to monitor a program that is running under the control of the Debug
Tool debugger. The first section also provides information about restrictions for
monitoring programs.

In the second section learn how to use commands to control a Coverage Utility
monitor session and to display statistics.

© Copyright IBM Corp. 1992, 2014 71

72 Debug Tool V13.1 Coverage Utility User's Guide and Messages

Chapter 7. Monitoring a program

This section describes how to run a Coverage Utility monitor session on MVS. The
monitor handles the user supervisor call instructions (SVCs) that are used as
breakpoints (BPs).

You create the JCL to start a monitor session from the Create JCL to Start the
Monitor panel. You can have multiple user sessions active at the same time.

The monitor program examines the breakpoint table information produced by the
setup step and accumulates data as the application program runs. When you run
the EQACUOSP command, the monitor writes the results to disk. This diagram
shows the Coverage Utility execution flow:

When you start the monitor session, the tables needed for handling the session are
created in ECSA. Ensure that you have the amount of storage needed for a user
session.

Related tasks
“Creating the start monitor JCL by using the panels”
“Running multiple user sessions” on page 76
Related references
Appendix B, “Resources and requirements,” on page 189

Creating the start monitor JCL by using the panels
To create the start monitor JCL, do the following steps:
1. Select option 3 from the Debug Tool Coverage Utility panel.

The Create JCL to Start the Monitor panel, shown below, is displayed.

BRKTAB

BRKOUT
breakout table

to reports

User
programMonitor

Setup

Breakpoints

Return

© Copyright IBM Corp. 1992, 2014 73

2. Enter any information that you want to change, select option 1, and then press
Enter.

The options and fields on the panel are as follows:

Generate
Generates JCL from the parameters that you specify on the panel.

Edit Displays an ISPF edit session where you can change existing JCL.

Submit
Submits for execution the JCL that you specify in the JCL Dsn field on this
panel.

Use Program Name for File Name
Enter YES if you want to construct the data set name from the default
high-level qualifier, the specified program name, and the default low-level
qualifier for each data set.

When you press Enter, the file names on the panel are changed
automatically. Coverage Utility usually constructs the data set name by
using the program name.

Program Name
The name to use for Coverage Utility files when you enter YES in the Use
Program Name for File Name field. This name can be any valid name; it
does not need to be the name of any of your programs. Names of the
following form are created:
v Sequential data sets:

’proj_qual.program_name.file_type’

For example: 'YOUNG.SAMPLE.COB01.BRKTAB'
v Partitioned data sets:

’proj_qual.file_type(program_name)’

For example: 'YOUNG.SAMPLE.BRKTAB(COB01)'

----------------------- Create JCL to Start the Monitor -----------------------
Option ===>

1 Generate Generate JCL from parameters
2 Edit Edit JCL
3 Submit Submit JCL

Enter END to Terminate

Use Program Name for File Name YES (Yes|No) Program Name COB01

Session ID YOUNG

Input File:
Breakpoint Table Dsn. ’YOUNG.SAMPLE.COB01.BRKTAB’

JCL Library and Member:
JCL Dsn ’YOUNG.SAMPLE.JCL(XCOB01)’

Output File:
Breakout Dsn. ’YOUNG.SAMPLE.COB01.BRKOUT’

74 Debug Tool V13.1 Coverage Utility User's Guide and Messages

Session ID
An ID for your session. This ID defaults to your TSO user ID. Multiple
testers can use the monitor simultaneously.

Breakpoint Table Dsn
The name of the BRKTAB data set that is created during setup and used by
the monitor program.

To start a monitor session with a collection of breakpoint table data sets,
do either of the following alternatives:
v Modify the generated JCL to concatenate the desired breakpoint table

data sets.
v Concatenate multiple breakpoint table data sets into a single data set

and use the resulting data set to start the monitor.

JCL Dsn
The name of the JCL data set that contains the JCL for this action.

Default: If you set the Use Program Name for File Name field to YES,
then the member name or program name qualifier of the data set will be
Xxxxxxxx, where xxxxxxx is the last seven characters of the program name.

Breakout Dsn
The name of the BRKOUT data set that is created during execution and
used by the report program.

Related tasks
“Running multiple user sessions” on page 76

Parameters for the monitor
This section describes the input parameters that you can specify in the PARM field
on the start monitor JCL EXEC statements created as described in the previous
section.

The start monitor program (EQACUOCM) accepts parameters that are built
automatically by the ISPF dialog. The syntax of the parameter string is:

�� START , Session_ID
,,,,,,common_parameters

��

START
The user is trying to start a new session with the ID passed in the Session ID
parameter. Up to 256 sessions can be active on the same MVS system.

Session_ID
An 8-character string that identifies the session.

common_parameters
Any of the parameters that are common to multiple routines, separated by
commas.

Related references
Appendix E, “Parameters that are common to multiple routines,” on page 205

Chapter 7. Monitoring a program 75

Running multiple user sessions
More than one tester can use the Coverage Utility monitor simultaneously on an
MVS system. Each separate invocation of the monitor is called a session. The
monitor identifies a session by a session ID passed to it as a parameter. The Create
JCL to Start the Monitor panel, which creates the JCL, creates a session ID from the
tester's TSO user ID or a user-specified session ID. Each tester can start or stop a
session independently of any other tester.

Changing and using IDs
You can change the session ID to a user-defined ID either by changing the Session
ID option on the Create JCL to Start the Monitor panel or by editing the start
monitor JCL. To change the session ID by editing the start monitor JCL, change
each of the following to the ID that you choose:
v The sessid qualifier in the following data set names:

– syspref.sysuid.sessid.EXTEMP.EXEC
– sysuid.sessid.EXTEMP.EXEC

v The second parameter to the EQACUOCM program

Changing the session ID lets you create custom batch test runs for automation
purposes.

Any user can stop or cancel any session if the user knows the session ID (which
can be determined by issuing the EQACUOSE command). This action can be
necessary, for example, if there are plans to IPL the system, which will cause the
loss of test data.

Coverage of common modules with multiple user sessions
When multiple testers simultaneously run shared modules, reports are affected. In
some environments (for example, CICS), only one copy of a module is in storage
for all users of that module.

In general when multiple testers run a monitored module, the following rules
apply:
v When the module is monitored by only one session (its BRKTAB appears in only

one session), all coverage from all testers appears in that session's coverage data.
v When the module is monitored by multiple sessions (its BRKTAB appears in

multiple sessions), the first session in which the module is started will usually
receive all of the coverage data. Other sessions where the module is monitored
will show no coverage data.

The following examples show various scenarios in which you can use the monitor:
“Example: Multiple testers running modules with unique modules per session”
“Example: Multiple testers running with modules monitored in multiple
sessions” on page 77
“Example: Multiple testers running a module, each with a unique copy” on
page 78

Example: Multiple testers running modules with unique modules
per session
This example describes multiple testers running the same modules, with only one
session monitoring each module:

76 Debug Tool V13.1 Coverage Utility User's Guide and Messages

Tester Setup Start session Run code

Tester 1 monitors
modules A, C, and D,
but running test
cases that run
modules A through F.

v Listings for
module A, module
C, and module D

v Instrumented
objects linked into
executable
modules A through
F

v Session 1
v BRKTABs from

module A, module
C, and module D

In modules A
through F

Tester 2 monitors
modules B and E, but
running test cases
that run modules A
through F.

v Listings for
module B and
module E

v Instrumented
objects linked into
executable
modules A through
F

v Session 2
v BRKTABs from

module B and
module E

Same as for Tester 1

Tester 3 monitors
module F, but
running test cases
that run modules A
through F.

v Listings for
module F

v Instrumented
objects linked into
executable
modules A through
F

v Session 3
v BRKTABs from

module F

Same as for Tester 1

The coverage data from session 1 will be the cumulative coverage of all three
testers for modules A, C, and D. There is no way for Tester 1 to know what
coverage data was caused by each tester. The same is true for the coverage data
from session 2 and session 3.

Example: Multiple testers running with modules monitored in
multiple sessions
This example describes multiple testers executing the same module, with multiple
sessions monitoring identical modules.

Common setup is performed for modules A through F and instrumented objects
are linked into executable modules A through F

Tester Setup Start session Run code

Tester 1 monitors the
coverage of modules
A, C, and D, but
running test cases
that run Modules A
through F.

v Listings for
modules A through
F

v Instrumented
objects linked into
executable
modules A through
F

v Session 1
v BRKTABs from

module A, module
C, and module D

In modules A
through F

Tester 2 monitors
modules B, C and E,
but running test
cases that run
modules A through F.

Same as for Tester 1 v Session 2
v BRKTABs from

module B, module
C, and module E

Same as for Tester 1

Chapter 7. Monitoring a program 77

Tester Setup Start session Run code

Tester 3 monitors
modules B and F, but
running test cases
that run modules A
through F.

Same as for Tester 1 v Session 3
v BRKTABs from

module B and
module F

Same as for Tester 1

Assume that the order that the sessions were started is session 1, session 2, and
then session 3. Module C is being monitored in sessions 1 and 2, and module B is
being monitored in sessions 2 and 3.

Any coverage in module C from any tester will usually be shown in session 1.
Even though session 2 is monitoring C, the coverage data for C from session 2 will
probably show no coverage. The same is true for module B, monitored by sessions
2 and 3. Coverage for B will show up in session 2.

However, if session 1 is stopped, any subsequent execution of module C now
appears in the session 2 coverage data. The same will be true for module B, if
session 2 is stopped but session 3 is still active.

Example: Multiple testers running a module, each with a unique
copy
Each tester can ensure unique coverage data for test cases run by that tester, by
using the following procedure:

Tester Setup Start session Run code

Tester 1 monitors
modules A through F.

v Listings for
modules A through
F

v Link into modules
A1 through F1

v Session 1
v BRKTABs from

modules A through
F from Tester 1
setup

In modules A1
through F1

Tester 2monitors
modules A through F.

v Listings for
modules A through
F

v Link into modules
A2 through F2

v Session 2
v BRKTABs from

modules A through
F from Tester 2
setup

In modules A2
through F2

Tester 3monitors
modules A through F.

v Listings for
modules A through
F

v Link into modules
A3 through F3

v Session 3
v BRKTABs from

modules A through
F from Tester 3
setup

In modules A3
through F3

Each tester performed a unique setup for the code to be monitored in modules A
through F. Then the instrumented objects were linked into unique executable
modules Ax through Fx. The coverage statistics represent testing done by an
individual tester and no one else.

Using performance mode to reduce monitor overhead
Measuring when a conditional branch is taken requires additional overhead. If the
increased overhead is unacceptable for your testing, you can turn off conditional
branch coverage by setting performance mode on.

78 Debug Tool V13.1 Coverage Utility User's Guide and Messages

When you process C/C++ code that contains inline functions, performance mode
must be on. If it is off, a message is issued and the performance mode is assumed
to be on.

You can control performance mode in the following ways:
v Change a default setting. Change the performance mode default (in the setup

Defaults section of Defaults) to YES. Any setup JCL that you subsequently create
by the setup JCL generator will indicate that performance mode is to be used.
Hence, any BRKTAB files that are created in the setup step will have a flag set
to indicate that conditional branches should not be analyzed.

v Change the performance_mode flag in the setup JCL for individual modules
(EQACUSET). Any BRKTAB files that are created by setup when this flag is set
to Y will have a flag set to indicate that conditional branches should not be
analyzed.

When performance mode is set on by setup, the summary report for the test run
will not show conditional branch coverage. The annotation for conditional
statements in an annotated listing report is also modified.

When performance mode is set off by setup, and then later enabled by
EQACUOPN, summary reports and annotated listing reports will still include
conditional breakpoint information, although the data might be incomplete.

Related concepts
“Suppression of conditional branch coverage with performance mode” on page
117
“Changes in annotation symbols with performance mode” on page 123
Related tasks
“Modifying your Coverage Utility defaults” on page 9
Related references
“EQACUSET” on page 67

Monitoring a program that is executing under control of the Debug
Tool debugger

You can both monitor a C, C++, COBOL, or PL/I program with the Coverage
Utility monitor and step through it with the Debug Tool debugger at the same
time, if you do not use the Debug Tool debugger Dynamic Debug facility.
Attention: if you are running a program that contains monitor breakpoints, you
must use SET DYNDEBUG OFF and SET DISASSEMBLY OFF while using the debugger.

Restrictions on monitoring programs
Coverage Utility cannot monitor programs running in the UNIX System Services
environment.

For programs that run on different MVS images, you must start and stop the
monitor session on the same MVS image on which monitored programs are run.

In addition, Coverage Utility imposes restrictions on the following types of
programs:
v Programs that reside in read-only storage.
v Programs that affect certain system modes.

Related references
“Restrictions on programs that reside in read-only storage” on page 80
“Restrictions on system modes” on page 80

Chapter 7. Monitoring a program 79

Restrictions on programs that reside in read-only storage
Coverage Utility can replace breakpoints in user programs only by using the key of
the user program. Therefore, user programs that run in read-only storage cannot be
run if they are instrumented with the breakpoints that Coverage Utility needs.

A reentrant program runs in read-only storage when it is run as follows:
v Loaded in a CICS region with reentrant program protection (controlled by the

CICS RENTPGM=PROTECT system initialization parameter). You can test in a CICS
region without reentrant program protection (RENTPGM=NOPROTECT).

v Loaded from an authorized library. Relink the program as non-reentrant, or
place the program in a non-authorized library (if possible).

v Loaded from the link pack area (LPA)

Restrictions on system modes
A type 3 user SVC is used for a breakpoint. There are some system modes that
cannot be in effect when this type of SVC is issued. Typically these would be used
in assembler code only. If a breakpoint is hit when one of these system modes is in
effect, an 0F8 system ABEND occurs.

For details about which system modes can lead to this ABEND, see the reason
code list for an 0F8 system ABEND code in the z/OS MVS System Codes or OS/390
MVS System Codes manuals (except for reason code 18, AR mode, which is not a
restriction with the Coverage Utility breakpoint SVCs).

80 Debug Tool V13.1 Coverage Utility User's Guide and Messages

Chapter 8. Monitor commands

You can use several commands to control a Coverage Utility monitor session and
to display statistics. You can run these commands only while a monitor session is
running:
v “EQACUOBP (Display breakpoint status)” on page 82
v “EQACUOID (Add ID)” on page 85
v “EQACUOPF (Performance mode off)” on page 86
v “EQACUOPN (Performance mode on)” on page 87
v “EQACUOQT (Quit)” on page 88
v “EQACUORE (Reset)” on page 89
v “EQACUOSA (Display statistics)” on page 90
v “EQACUOSE (Display sessions)” on page 92
v “EQACUOSL (Display listings)” on page 94
v “EQACUOSN (Snapshot)” on page 96
v “EQACUOSP (Stop)” on page 97

The command execs are shipped in a partitioned data set (PDS) named
hi_lev_qual.SEQAEXEC. Any status messages that result from the commands are
written to the data set prefix.MSGS.FILE. If this data set does not exist, it is created
when a command is issued.

Related tasks
“Issuing commands”

Issuing commands
You can issue commands in the following ways:
v From the Control the Monitor panel

The main commands are listed on the panel. When you select a command, a
panel is displayed that enables you to enter any command parameters.

v From the TSO command line
Some commands have optional parameters that you can use. This explicit
invocation shows the method for passing parameters to the command:
EX ’hi_lev_qual.SEQAEXEC(cmdname)’ ’parm1 parm2’

If the Debug Tool data sets were installed into your normal logon procedure,
you can use this form to issue commands:
cmdname parm1 parm2

v From MVS BATCH using JCL
This method is useful in automating test case runs. You can embed the JCL in
your batch stream. When the commands are run in batch mode, the MSGS.FILE
is appended with messages from each command that is run in the job. You can
view this file for problem determination. The following example shows JCL to
issue commands:

4. If PROFILE NOPREFIX is set in your TSO Session, then prefix is set to your user ID. If PROFILE PREFIX is set, then prefix is set
to the PROFILE PREFIX value, appended with period and your userid ID if the PREFIX value and your user ID are different.

© Copyright IBM Corp. 1992, 2014 81

//YOUNGC JOB (12345678),
// YOUNG,NOTIFY=YOUNG,USER=YOUNG,
// TIME=1,MSGCLASS=H,CLASS=A,REGION=2M
//*
//* FIRST A EQACUOSA COMMAND IS RUN, WITH RESULTS IN
//* YOUNG.MSGS.FILE
//* NEXT A EQACUOSP COMMAND IS RUN
//TSOTMP EXEC PGM=IKJEFT01,DYNAMNBR=30,REGION=4096K
//SYSEXEC DD DSN=hi_lev_qual.SEQAEXEC,DISP=SHR
//SYSTSPRT DD SYSOUT=*
//SYSUDUMP DD SYSOUT=*
//SYSTSIN DD *

EQACUOSA YOUNG 1 1 9999
EQACUOSP

/*

To see a list of the main Coverage Utility monitor commands, select option 5 from
the Debug Tool Coverage Utility panel. The resulting Control the Monitor panel,
shown here, contains a list of commands that you can select.

Related references
“EQACUOBP (Display breakpoint status)”
“EQACUOID (Add ID)” on page 85
“EQACUOQT (Quit)” on page 88
“EQACUORE (Reset)” on page 89
“EQACUOSA (Display statistics)” on page 90
“EQACUOSE (Display sessions)” on page 92
“EQACUOSL (Display listings)” on page 94
“EQACUOSN (Snapshot)” on page 96
“EQACUOSP (Stop)” on page 97

EQACUOBP (Display breakpoint status)
The EQACUOBP command, issued from the panel shown here, displays the status
of breakpoints.

----------------------------- Control the Monitor -----------------------------
Option ===>

1 Start Create JCL to Start the Monitor

2 Stop Stop monitor execution normally (EQACUOSP)

3 SessDisplay Display all active sessions (EQACUOSE)

4 Listings Display listings (EQACUOSL)
5 Statistics Display statistics (EQACUOSA)
6 BPDisplay Display Breakpoint status (EQACUOBP)

7 AddId Specify a unique testcase id (EQACUOID)
8 Snapshot Take snapshot of data (EQACUOSN)
9 Reset Reset all data in monitor (EQACUORE)

10 Quit Terminate monitor without saving breakpoint data (EQACUOQT)

Enter END to Terminate

82 Debug Tool V13.1 Coverage Utility User's Guide and Messages

Important: This command can produce a large amount of data, so use it with
discretion.

You enter this command on the command line:
EX ’hi_lev_qual.SEQAEXEC(EQACUOBP)’ ’parameters’

Specify parameters in the following syntax:

��
session_id

1
� list

1
� PA_number

MoreParms

��

MoreParms:

1

bp_start 9999
�

bp_end �common_parameters

where:

session_id
The ID of the session to be displayed. The default is the TSO user ID.

� One or more blanks.

list
The number of the listing; the default is 1.

PA_number
The number of the program area; the default is 1. The PA number is 1–origined
for the specified listing.

bp_start
The number of the first breakpoint in the program area that you want
displayed; the default is 1.

bp_end
The number of the last breakpoint in the program area that you want
displayed; the default is 9999.

---------------------- Monitor: Display Breakpoint Status --------------------
Command ===>

To display breakpoint status, complete the menu below and press ENTER:

Session id YOUNG

List number 1

PA number. 1

First breakpoint number . 1

Last breakpoint number . . 9999

Chapter 8. Monitor commands 83

common_parameters
Any of the parameters that are common to multiple routines (LINECOUNT,
LOCALE, NATLANG), separated by blanks.

Example 1

To display all breakpoints in LIST 1, PA 1 of your session ID, enter this command:
EX ’hi_lev_qual.SEQAEXEC(EQACUOBP)’

Example 2

To display all breakpoints for session YOUNG in LIST 1, PA 2 with a break point
number between 10 and 50, enter this command:
EX ’hi_lev_qual.SEQAEXEC(EQACUOBP)’ ’YOUNG 1 2 10 50’

A status panel, such as that shown here, is displayed.

The following fields are displayed for the selected listing and program area::

Num The sequential number of the listing.

Listing
The name of the listing data set.

Date The date of the compile.

Time The time of the compile.

PAs The number of program areas in the listing.

BPs The number of break points in the listing.

PA The sequential number of the program area.

ADR If the program has run, this is the storage address of the program area.

BPS The number of break points in this program area.

EVNTS
The number of break points that have executioned for this program area.

ACTVE
The number of break points that are still in storage in the program area.

BROWSE YOUNG.MSGS.FILE Line 00000000 Col 001 080
Command ===> Scroll ===> CSR
********************************* Top of Data **********************************
Num Listing Date Time PAs BPs
--
001 YOUNG.SAMPLE.COBOLST(COB01A) 99.204 07:08.54 00005 000031
PA ADR BPS EVNTS ACTVE
--
00001 00000000 000006 0000000000 000006
RNUM OFFSET OPCD BRNCH TO EVENTS NB AB DE CT CF BV B> AC
--
4F39 00025C D2078020 00000000 000000000 X X
419D 000262 D2048020 00000000 000000000 X X
4ED1 000268 D2028025 00000000 000000000 X X
4824 00026E D2018020 00000000 000000000 X X
F131 000274 D2028022 00000000 000000000 X X
948B 00027A D2028025 00000000 000000000 X X
******************************** Bottom of Data ********************************

84 Debug Tool V13.1 Coverage Utility User's Guide and Messages

The following fields are displayed for each breakpoint:

RNUM
A random number for this long SVC break point (0 if short SVC break
point).

OFFSET
The hexadecimal offset of the breakpoint in the program area.

OPCD (op code)
The op code of the instruction at the breakpoint.

BRNCH TO (branch to)
If this instruction is a branch instruction that has branched, this address is
the target address. If it starts with FF, the address is an offset within this
program area.

EVENTS
The number of times that this breakpoint was executed before it was
removed. For Coverage Utility, breakpoints are removed as soon as
possible, so that most breakpoints are executed once only. In some cases,
conditional branch breakpoints must stay in memory and are executed
more than once.

NB (not a branch)
If this instruction is not a branch instruction, this entry is an X.

AB (always branch)
If this instruction is an unconditional branch instruction, this entry is an X.

DE (dummy entry)
If this is a dummy entry, this entry is an X. A dummy entry is the
instruction after a conditional branch instruction that contains a breakpoint
to tell when the branch falls through.

CT (condition true)
A conditional branch instruction that has branched.

CF (condition false)
A conditional branch instruction that has fallen through.

BV (conditional branch fall through)
A conditional branch that has always fallen through and never branched.

B> (conditional branch branched)
A conditional branch that has always branched and never fallen through.
The breakpoint is not active. When the dummy entry after this instruction
is executed, this breakpoint is updated as fallen through.

AC (active)
The breakpoint is active.

Related references
Appendix E, “Parameters that are common to multiple routines,” on page 205

EQACUOID (Add ID)
Issue the EQACUOID command from the panel shown here, to add a unique test
case ID.

Chapter 8. Monitor commands 85

The test case ID is printed in the summary report.

Enter this command on the command line:
EX ’hi_lev_qual.SEQAEXEC(EQACUOID)’ ’parameters’

Specify parameters in the following syntax:

��
test_id ,

session_id , common_parameters

��

test_id
The assigned test ID. This ID can be from 1 to 16 characters. The default is a
time stamp that consists of the date and time when the command was
invoked. The test case ID is printed in the summary report.

session_id
The ID of the session for which the test case ID is to be set. The default is the
TSO user ID.

A status panel, such as that shown here, is displayed.

EQACUOPF (Performance mode off)
The EQACUOPF command turns the monitor performance mode off and so
enables conditional branch coverage. The break points that are needed for
conditional coverage are left in storage. Overhead is higher when these break
points are left in storage. You can use EQACUOPF to turn off performance mode
only if performance mode was off during setup and later turned on by the
EQACUOPN command.

If you are not interested in conditional coverage, turn performance mode on, by
either of the following means:
v Change the default parameter that controls performance mode before you

generate the JCL for the setup step.
v Use the EQACUOPN command.

You can turn performance mode on and off for all program areas or for a selected
program area.

------------------------------- Monitor: Add ID -------------------------------
Option ===>_

To assign a test case ID, complete the menu below and press ENTER:

Test Case ID

Session ID YOUNG

BROWSE YOUNG.MSGS.FILE Line 00000000 Col 001 080
Command ===>_ Scroll ===> PAGE

********************************* Top of Data **********************************
The TEST ID has been set to 05/14/9713:38:38
******************************** Bottom of Data ********************************

86 Debug Tool V13.1 Coverage Utility User's Guide and Messages

Enter this command on the command line:
EX ’hi_lev_qual.SEQAEXEC(EQACUOPF)’ ’parameters’

Specify parameters in the following syntax:

��
session_id ,

PA_number ,common_parameters

��

session_id
The ID of the session for which to turn performance mode off. The default is
the TSO user ID.

PA_number
The number of the program area. The default is all program areas in the
requested session.

common_parameters
Any of the parameters that are common to multiple routines, separated by
commas.

Use the EQACUOSA command to get the program area number for selectively
setting performance mode off.

Example 1:

To turn performance mode off for all program areas, enter this command:
EX ’hi_lev_qual.SEQAEXEC(EQACUOPF)’

Example 2:

To turn performance mode off for session YOUNG, PA 2, enter this command:
EX ’hi_lev_qual.SEQAEXEC(EQACUOPF)’ ’YOUNG, 2’

Related references
Appendix E, “Parameters that are common to multiple routines,” on page 205

EQACUOPN (Performance mode on)
The EQACUOPN command turns the monitor performance mode on and so
disables conditional branch coverage. The break points that are needed for
conditional coverage are not left in storage. Overhead is higher when these break
points are left in storage.

If you are not interested in conditional coverage, turn performance mode on, by
either of the following means:
v Change the default parameter that controls performance mode before you

generate the JCL for the setup step.
v Use the EQACUOPN command.

You can turn performance mode on and off for all program areas or for a selected
program area.

Enter this command on the command line:
EX ’hi_lev_qual.SEQAEXEC(EQACUOPN)’ ’parameters’

Chapter 8. Monitor commands 87

Specify parameters in the following syntax:

��
session_id ,

PA_number ,common_parameters

��

where:

session_id
The ID of the session for which to turn performance mode on. The default is
the TSO user ID.

PA_number
The numberof the program area . The default is all program areas in the
requested session.

common_parameters
Any of the parameters that are common to multiple routines, separated by
commas.

Use the EQACUOSA command to get the program area number for selectively
setting performance mode on.

Mode flag N: If the BRKTAB for this session was built with the performance
mode flag set to N (off), then the summary and annotated listing reports will still
include (possibly incomplete) conditional breakpoint information after this
command is issued.

Example 1:

To turn performance mode on for all program areas, enter this command:
EX ’hi_lev_qual.SEQAEXEC(EQACUOPN)’

Example 2:

To turn performance mode on for session YOUNG, PA 2, enter this command:
EX ’hi_lev_qual.SEQAEXEC(EQACUOPN)’ ’YOUNG, 2’

Related references
Appendix E, “Parameters that are common to multiple routines,” on page 205

EQACUOQT (Quit)
The EQACUOQT command, issued from the panel shown here, is the same as
EQACUOSP, except that no output file is written (BRKOUT).

When you press Enter from this panel, the monitor displays the panel shown here,
enabling you to enter additional parameters.

---------------------------- Monitor: Quit Monitor ----------------------------
Option ===>_

Quit Monitor Without Saving Breakpoint Data:
Override default session id NO (Yes|No)

88 Debug Tool V13.1 Coverage Utility User's Guide and Messages

Enter this command on the command line:
EX ’hi_lev_qual.SEQAEXEC(EQACUOQT)’ ’parameters’

Specify parameters in the following syntax:

��
session_id ,common_parameters

��

session_id
The ID of the session to cancel. The default is the TSO user ID.

common_parameters
Any of the parameters that are common to multiple routines, separated by
commas.

When the quit command completes, a panel such as the one shown here is
displayed.

Related references
Appendix E, “Parameters that are common to multiple routines,” on page 205

EQACUORE (Reset)
The EQACUORE command, issued from the panel shown here, resets all statistics
in the current monitor session to zero.

The monitor resumes updating statistics immediately.

Enter this command on the command line:
EX ’hi_lev_qual.SEQAEXEC(EQACUORE)’ ’parameters’

---------------------------- Monitor: Quit Monitor ----------------------------
Option ===>_

Press ENTER to Quit Monitor Without Saving Breakpoint Data:
Override default session id NO (Yes|No)
Session Id

BROWSE YOUNG.MSGS.FILE Line 00000000 Col 001 080
Command ===>_ Scroll ===> PAGE

********************************* Top of Data **********************************
Session YOUNG ended no data written.
******************************** Bottom of Data ********************************

---------------------- Monitor: Reset All Data in Monitor ---------------------
Option ===>_

To reset data to zero, complete the menu below and press ENTER:

Session ID YOUNG

PA Number. ALL

Chapter 8. Monitor commands 89

Specify parameters in the following syntax:

��
session_id ,

PA_number ,common_parameters

��

session_id
The ID of the session for which to reset statistics. The default is the TSO user
ID.

PA_number
The number of the program area. The default is all program area's in the
requested session.

common_parameters
Any of the parameters that are common to multiple routines, separated by
commas.

Use the EQACUOSA command to get the program area number for selectively
resetting breakpoints.

Related references
Appendix E, “Parameters that are common to multiple routines,” on page 205

EQACUOSA (Display statistics)
Issue the EQACUOSA command from the panel shown here, to select a session ID
and program areas for which to display statistics.

Enter this command on the command line:
EX ’hi_lev_qual.SEQAEXEC(EQACUOSA)’ ’parameters’

Specify parameters in the following syntax:

��
session_id

1
� list

MoreParms

��

MoreParms:

------------------------- Monitor: Display Statistics ------------------------
Command ===>

To display PA statistics, complete the menu below and press ENTER:

Session ID YOUNG

List number 1

Starting PA number . . 1

Ending PA number . . . 9999

90 Debug Tool V13.1 Coverage Utility User's Guide and Messages

1
start_PA

9999
� end_PA

�common_parameters

session_id
The ID of the session for which statistics are to be displayed. The default is the
TSO user ID.

� One or more blanks.

list
The listing number to display; the default is 1.

start_PA
The first program area number to be displayed in this listing; the default is 1.
The start_PA number is 1–origined for the specified listing.

end_PA
The last program area number to be displayed; the default is 9999. The end_PA
number is 1–origined for the specified listing.

common_parameters
Any of the parameters that are common to multiple routines, separated by
commas.

Example 1:

To display statistics for all program areas, enter this command:
EX ’hi_lev_qual.SEQAEXEC(EQACUOSA)’

Example 2:

To display statistics for session YOUNG for LIST 1 starting with PA 1, enter this
command:
EX ’hi_lev_qual.SEQAEXEC(EQACUOSA) ’YOUNG 1 1’

Example 3:

To display statistics for LIST 1 on program areas 2 through 4 of session YOUNG,
enter this command:
EX ’hi_lev_qual.SEQAEXEC(EQACUOSA) ’YOUNG 1 2 4’

A statistics panel, such as that shown here, is displayed.

Chapter 8. Monitor commands 91

For each program area, the following fields are displayed:
Num The sequential number of the listing.
Listing

The name of the listing data set.
Date The date of the compile.
Time The time of the compile.
PAs The number of program areas in the listing.
BPs The number of break points in the listing.
PA The sequential number of the program area in the listing.
ADR When program area has run, this is the storage address of the program

area.
BPS The number of break points that have been executed for the program area.
EVNTS (events)

The number of break points that have executed for this program area.
ACTVE (active)

The number of break points that are still in storage in the program area.
Related references
Appendix E, “Parameters that are common to multiple routines,” on page 205

EQACUOSE (Display sessions)
The EQACUOSE command displays a list of the current active sessions. Use this
command to identify session names or currently active users who need to stop or
cancel their sessions before the monitor is terminated.

When you select option 3 (Display all active sessions) on the Control the
Monitor panel, you get a response such as the following display:

BROWSE YOUNG.MSGS.FILE Line 00000000 Col 001 080
Command ===> Scroll ===> CSR
********************************* Top of Data **********************************
Num Listing Date Time PAs BPs
--
001 YOUNG.SAMPLE.COBOLST(COB01A) 99.204 07:08.54 00005 000031
PA ADR BPS EVNTS ACTVE
--
00001 00000000 000006 0000000000 000006
00002 00000000 000015 0000000000 000015
00003 00000000 000001 0000000000 000001
00004 00000000 000005 0000000000 000005
00005 00000000 000004 0000000000 000004
--
TOTAL 00000000 000031 0000000000 000031
******************************** Bottom of Data ********************************

92 Debug Tool V13.1 Coverage Utility User's Guide and Messages

Enter this command on the command line:
EX ’hi_lev_qual.SEQAEXEC(EQACUOSE)’ ’parameters’

Specify parameters in the following syntax:

��

LEVEL �common_parameters
*

��

LEVEL
Requests that the current release of the Coverage Utility monitor be displayed.
Otherwise, all active sessions will be displayed.

� One or more blanks.

common_parameters
Any of the parameters that are common to multiple routines, separated by
commas.

The EQACUOSE command with the LEVEL parameter displays the release level
and table address data used by Coverage Utility support, as this example shows:

Example

To display a list of all the monitor sessions, enter this command:
EX 'hi_lev_qual.SEQAEXEC(EQACUOSE)'

BROWSE GYOUNG.MSGS.FILE Line 00000000 Col 001 080
Command ===> Scroll ===> PAGE
********************************* Top of Data **********************************
Session Userid Date Time PAs PA ECSA BPs BP ECSA
Name Started Started Bytes Bytes
-------- -------- ------- -------- ---------- ---------- ---------- ----------
ASMM1L GYOUNG 12.023 10:19.20 0000000004 0000001040 0000000091 0000037520
ASM01 GYOUNG 12.023 10:19.21 0000000004 0000001040 0000000090 0000037468
ASM01H GYOUNG 12.023 10:19.23 0000000004 0000001040 0000000090 0000037468
...
COB21M BCARTER 12.023 10:19.59 0000000001 0000000368 0000000010 0000033308
COB22M BCARTER 12.023 10:20.00 0000000001 0000000368 0000000026 0000034140

Sessions PAs PA ECSA BPs BP ECSA
Bytes Bytes

-------- ---------- ---------- ---------- ----------
032 0000000229 0000036448 0000002677 0001188420

******************************** Bottom of Data ********************************

BROWSE GYOUNG.MSGS.FILE Line 00000000 Col 001 080
Command ===> Scroll ===> CSR
********************************* Top of Data **********************************
Monitor Release: VDR1M0 Date: 2012.241
MAST: 07FDFE00 PSA: 07B6B000 CPU: 00000000 SEST: 07ECA7E8 UNID: 00000000
SESSION ID: ASMM1L PA: 18A0D9B8 BP: 17C47D70
SESSION ID: ASM01 PA: 18A0D5A8 BP: 17A6FDA0
SESSION ID: ASM01H PA: 186390B8 BP: 17B7EDA0
...
SESSION ID: COB21M PA: 1879A048 BP: 1795EDE0
SESSION ID: COB22M PA: 187450D0 BP: 17955AA0
******************************** Bottom of Data ********************************

Chapter 8. Monitor commands 93

A session panel, such as that shown here, is displayed:

For each session, the following fields are displayed:

Session Name
The name of the session.

Userid
The user ID that was used to start the session.

Date Started
The date the session was started (YY.DDD).

Time Started
The time the session was started (HH:MM:SS).

PAs The number of program areas in the session.

PA ECSA bytes
The number of bytes in ECSA that are used for the program area tables.

BPs The number of breakpoints in the session.

BP ECSA bytes
The number of bytes in ECSA that are used for the breakpoint tables.

Finally, the line containing a total for some columns is displayed.
Related references
Appendix E, “Parameters that are common to multiple routines,” on page 205

EQACUOSL (Display listings)
Issue the EQACUOSL command from the panel shown here, to select listings for
which you want to display statistics.

BROWSE GYOUNG.MSGS.FILE Line 00000000 Col 001 080
Command ===> Scroll ===> PAGE
********************************* Top of Data **********************************
Session Userid Date Time PAs PA ECSA BPs BP ECSA
Name Started Started Bytes Bytes
-------- -------- ------- -------- ---------- ---------- ---------- ----------
ASMM1L GYOUNG 12.023 10:19.20 0000000004 0000001040 0000000091 0000037520
ASM01 GYOUNG 12.023 10:19.21 0000000004 0000001040 0000000090 0000037468
ASM01H GYOUNG 12.023 10:19.23 0000000004 0000001040 0000000090 0000037468
...
COB21M BCARTER 12.023 10:19.59 0000000001 0000000368 0000000010 0000033308
COB22M BCARTER 12.023 10:20.00 0000000001 0000000368 0000000026 0000034140

Sessions PAs PA ECSA BPs BP ECSA
Bytes Bytes

-------- ---------- ---------- ---------- ----------
032 0000000229 0000036448 0000002677 0001188420

******************************** Bottom of Data ********************************

94 Debug Tool V13.1 Coverage Utility User's Guide and Messages

Enter this command on the command line:
EX ’hi_lev_qual.SEQAEXEC(EQACUOSL)’ ’parameters’

Specify parameters in the following syntax:

��
1 9999

session_id� start_list � end_list �
common_parms

��

where:

session_id
The session for which statistics are to be displayed. The default is the TSO user
ID.

� One or more blanks.

start_list
The first listing number that is to be displayed; the default is 1.

end_list
The last listing number that is to be displayed; the default is 9999.

common_parms
Any of the parameters that are common to multiple routines, separated by
commas.

Example 1:

To display statistics on all listings, enter this command:
EX ’hi_lev_qual.SEQAEXEC(EQACUOSL)’

Example 2:

To display statistics for session YOUNG starting with listing 2, enter this
command:
EX ’hi_lev_qual.SEQAEXEC(EQACUOSL)’ ’YOUNG 2’

Example 3:

To display statistics for session YOUNG starting with listings 2 to 4, enter this
command:
EX ’hi_lev_qual.SEQAEXEC(EQACUOSL)’ ’YOUNG 2 4’

A statistics panel, such as that shown here, is displayed.

-------------------------- Monitor: Display Listings -------------------------
Command ===>

To display the listings for a session, complete the menu below and press
ENTER:

Session ID YOUNG

Starting List number . 1

Ending List number . . 9999

Chapter 8. Monitor commands 95

For each listing, the following fields are displayed:
Num The sequential number of the listing
Listing

The name of the listing data set
Date The date of the compile
Time The time of the compile
PAs The number of program areas in the listing
BPs The number of break points in the listing

Related references
Appendix E, “Parameters that are common to multiple routines,” on page 205

EQACUOSN (Snapshot)
The EQACUOSN command, issued from the panel shown here, writes the current
statistics (BRKOUT) to disk.

When you press Enter on this panel, the monitor displays the panel shown here,
enabling you to enter additional parameters.

Statistics are not reset. This command enables you to take a snapshot of the current
coverage activity and run a report (for example, for each test case).

Enter this command on the command line:
EX ’hi_lev_qual.SEQAEXEC(EQACUOSN)’ ’parameters’

Specify parameters in the following syntax:

BROWSE YOUNG.MSGS.FILE Line 00000000 Col 001 080
Command ===> Scroll ===> CSR
********************************* Top of Data **********************************
Num Listing Date Time PAs BPs
--
001 YOUNG.SAMPLE.COBOLST(COB01A) 99.204 07:08.54 00005 000031
002 YOUNG.SAMPLE.COBOLST(COB01B) 99.204 07:08.56 00003 000021
003 YOUNG.SAMPLE.COBOLST(COB01C) 99.204 07:08.59 00004 000032
004 YOUNG.SAMPLE.COBOLST(COB01D) 99.204 07:09.01 00003 000013
******************************** Bottom of Data ********************************

------------------------ Monitor: Take Snapshot of Data ----------------------
Command ===>

Override Default File and Session Info
Specify a test case id NO (Yes|No)

Override default session id NO (Yes|No)

------------------------ Monitor: Take Snapshot of Data ----------------------
Command ===>

Complete information to be overridden and press ENTER to write stats:
Specify a test case id NO (Yes|No)
Test case id.

Override default session id . . NO (Yes|No)
Session id.

96 Debug Tool V13.1 Coverage Utility User's Guide and Messages

��
test_id
*

,
session_id

,
USE_DD ,common_parameters

��

test_id
The assigned test ID. This ID can be from 1 to 16 characters. The first 8
characters of the test ID are used to build the BRKOUT data set name. If you
do not provide the test ID parameter (or it is specified as an asterisk), the
default time stamp (date and time) is used and the BRKOUT data set name is
created by using the day of the year and the number of seconds that have
elapsed since the start of the day.

session_id
The ID of the session for the snapshot. The default is the TSO user ID.

USE_DD
Indicates that a preallocated DD BRKOUT is provided for the output BRKOUT
file.

common_parameters
Any of the parameters that are common to multiple routines, separated by
commas.

Trailing commas can be omitted.

Example 1

To have the test ID default to a time stamp and the BRKOUT name use that same
time stamp, enter this command:
EX ’hi_lev_qual.SEQAEXEC(EQACUOSN)’

Example 2

To add the test ID to the BRKOUT data and write the BRKOUT file to
prefix.TCASE1.BRKOUT4, enter this command:
EX ’hi_lev_qual.SEQAEXEC(EQACUOSN)’ ’TCASE1’

A status panel, such as that shown here, is displayed.

Related references
Appendix E, “Parameters that are common to multiple routines,” on page 205

EQACUOSP (Stop)
The EQACUOSP command, issued from the panel shown here, writes current
statistics to disk, removes all remaining breakpoints for all program areas, and
terminates the monitor session.

BROWSE YOUNG.MSGS.FILE Line 00000000 Col 001 080
Command ===>_ Scroll ===> PAGE

********************************* Top of Data **********************************
The TEST ID has been set to 05/14/9713:38:59
The data has been written to ’YOUNG.M134.M49139.BRKOUT’
******************************** Bottom of Data ********************************

Chapter 8. Monitor commands 97

When you press Enter for this panel, the monitor displays the panel shown here,
enabling you to enter additional parameters.

By default, the statistics are written to the BRKOUT data set name as supplied in
the JCL that started the monitor session. You can supply a different data set name
with the EQACUOSP command.

You enter this command on the command line:
EX ’hi_lev_qual.SEQAEXEC(EQACUOSP)’ ’parameters’

Specify parameters in the following syntax:

��
session_id

� brkout
* �common_parameters

��

session_id
The ID of the session to stop. The default is the current TSO user ID.

� One or more blanks.

brkout
The name of the breakout table data set. If this parameter is not specified or is
specified as an asterisk, an exec named prefix.sessionid.EXTEMP.EXEC4, which
is built when the monitor session is started, is run. This exec allocates the
BRKOUT file that is based on the data set names that are used when the start
monitor JCL was created. Otherwise, the statistics are written to the BRKOUT
file that you specify.

common_parameters
Any of the parameters common to multiple routines, separated by commas.

Example 1

To write data to the default files and set the BRKOUT session ID to the default
value of the TSO user ID, enter this command:
EX ’hi_lev_qual.SEQAEXEC(EQACUOSP)’

---------------------------- Monitor: Stop Monitor ---------------------------
Command ===>

Stop Monitor Normally:
Override default session id NO (Yes|No)

Override breakout dsn NO (Yes|No)

---------------------------- Monitor: Stop Monitor ---------------------------
Command ===>

Press ENTER to Stop Monitor Normally:
Override default session id NO (Yes|No)
Session id

Override breakout dsn NO (Yes|No)
Breakout Dsn

98 Debug Tool V13.1 Coverage Utility User's Guide and Messages

Example 2

To write data from MySessId to prefix.TEST1.BRKOUT4, enter this command:
EX ’hi_lev_qual.SEQAEXEC(EQACUOSP)’ ’MySessID TEST1.BRKOUT’

When the stop command completes, a status panel, such as that shown here, is
displayed.

Related references
Appendix E, “Parameters that are common to multiple routines,” on page 205

BROWSE YOUNG.MSGS.FILE Line 00000000 Col 001 080
Command ===>_ Scroll ===> CSR

********************************* Top of Data **********************************
Monitor session YOUNG stopped - session data written to disk

******************************** Bottom of Data ********************************

Chapter 8. Monitor commands 99

100 Debug Tool V13.1 Coverage Utility User's Guide and Messages

Part 5. Obtaining Coverage Utility reports

With Coverage Utility you can generate two kinds of reports to describe test case
coverage:

Summary report
A summary of the test case coverage.

Annotated listing report
Annotated compiler and assembler listings with a character on each
statement that contains a breakpoint to describe how each statement was
executed.

You can select the type of Coverage Utility report that you want from the Create
Reports panel.

Coverage Utility can also export the coverage data to a file in XML format, which
other programs can process. You can use coverage data in XML format as input to
other programs to manipulate the coverage data.

You can also use the Create Reports panel to export the coverage data in XML
format.

© Copyright IBM Corp. 1992, 2014 101

102 Debug Tool V13.1 Coverage Utility User's Guide and Messages

Chapter 9. Creating reports

To create a report, select option 4 from the Debug Tool Coverage Utility panel. The
Create Reports panel, shown here, is displayed. Use this panel to select the kind of
report that you want.

The options on the panel are as follows:

Summary
Creates JCL for a summary report.

Annotation
Creates JCL for both summary and annotated listing reports.

Export Exports data from a coverage run to a file in XML format.

Combine
Creates JCL for combining multiple Coverage Utility coverage runs.

GAnnotation
Creates an HTML annotated listing report.

GTarget
Creates an HTML targeted coverage report.

v “Creating summary report JCL by using the panels”
v “Creating annotated listing report JCL by using the panels” on page 105
v “Creating export JCL by using the panels” on page 107

Creating summary report JCL by using the panels
To create a summary report, select option 1 on the Create Reports panel. Use the
Create JCL for Summary report panel, shown here, to specify summary report
options and parameters.

---------------------------- Create Reports -------------------------------
Option ===>

1 Summary Create JCL for Summary Report
2 Annotation Create JCL for Summary and Annotation Report
3 Export Create JCL for Exporting Data

4 Combine Create JCL for Combining Multiple Runs

5 GAnnotation Create HTML Annotated Listing Report
6 GTarget Create HTML Targeted Coverage Report

Enter END to Terminate

© Copyright IBM Corp. 1992, 2014 103

The options and fields on the panel are as follows:

Generate
Generates JCL from the parameters that you have specified on the panel.

Edit Displays an ISPF edit session where you can change existing JCL.

Submit
Submits for execution the JCL that you specify in the JCL Dsn field on this
panel.

Use Program Name for File Name
Enter YES if you want to construct the data set names from the default
high-level qualifier, the specified program name, and the default low-level
qualifier for each data set.

When you press Enter, the file names on the panel are changed
automatically. Coverage Utility usually constructs the data sets names by
using the program name.

Program Name
The name to use for Coverage Utility files when you enter YES in the Use
Program Name for File Name field. This name can be any valid name; it
does not need to be the name of any of your programs. Names of the
following form are created:
v Sequential data sets:

’proj_qual.program_name.file_type’

For example: 'YOUNG.SAMPLE.COB01.BRKTAB'
v Partitioned data sets:

’proj_qual.file_type(program_name)’

For example: 'YOUNG.SAMPLE.BRKTAB(COB01)'

Input Files
The names of the breakpoint table and breakout data sets.

JCL Dsn
The name of the JCL data set that contains the JCL for this action.

------------------------ Create JCL for Summary Report ------------------------
Option ===>

1 Generate Generate JCL from parameters
2 Edit Edit JCL
3 Submit Submit JCL

Enter END to Terminate

Use Program Name for File Name YES (Yes|No) Program Name COB01

Input Files:
Breakpoint Table Dsn. ’YOUNG.SAMPLE.COB01.BRKTAB’
Breakout Dsn. ’YOUNG.SAMPLE.COB01.BRKOUT’

JCL Library and Member:
JCL Dsn ’YOUNG.SAMPLE.JCL(TCOB01)’

Output Summary Type and File:
Type. INTERNAL (Internal|External)
Inline N (I|N)
Report Dsn ’YOUNG.SAMPLE.COB01.SUMMARY’

(* for default sysout class)

104 Debug Tool V13.1 Coverage Utility User's Guide and Messages

Default: If the Use Program Name for File Name field is set to YES, then
the member name or program name qualifier of the data set will be
Txxxxxxx, where xxxxxxx is the last seven characters of the program name.

Type The type of summary report to be produced.
Internal

The report contains information about each program area.
External

The report contains information with all program areas combined.

This option is ignored for assembler program areas.

Inline For languages for which Coverage Utility supports optimized code, the
summary processor might include or ignore counts and percentages from
inline code.
I Include all lines of inline code in the summary counts and

percentages.
N Do not include inline code in the summary counts and

percentages.

Report Dsn
The name of the data set that contains the summary report.

Creating annotated listing report JCL by using the panels
To create a summary report and annotated listing report, select option 2 on the
Create Reports panel. Use the Create JCL for Summary and Annotation Report
panel, shown here, to specify summary report and annotated listing report options.

The options and fields on the panel are as follows:

Generate
Generates JCL from the parameters that you specify on the panel.

Edit Displays an ISPF edit session where you can change existing JCL.

Submit
Submits for execution the JCL that you specify in the JCL Dsn field on this
panel.

----------------- Create JCL for Summary and Annotation Report ----------------
Option ===>

1 Generate Generate JCL from parameters
2 Edit Edit JCL
3 Submit Submit JCL

Enter END to Terminate

Use Program Name for File Name YES (Yes|No) Program Name COB01

Input Files:
Control File Dsn. . . ’YOUNG.SAMPLE.DTCU(COB01)’
Breakpoint Table Dsn. ’YOUNG.SAMPLE.COB01.BRKTAB’
Breakout Dsn. ’YOUNG.SAMPLE.COB01.BRKOUT’

JCL Library and Member:
JCL Dsn ’YOUNG.SAMPLE.JCL(RCOB01)’

Output Summary Type and Annotation File:
Type. INTERNAL (Internal|External)
Inline N (I|N)
Report Dsn ’YOUNG.SAMPLE.COB01.REPORT’

(* for default sysout class)

Chapter 9. Creating reports 105

Use Program Name for File Name
Enter YES if you want to construct the data set names from the default
high-level qualifier, the specified program name, and the default low-level
qualifier for each data set.

When you press Enter, the file names on the panel are changed
automatically. Coverage Utility usually constructs the data set names by
using the program name.

Program Name
The name to use for Coverage Utility files when you enter YES in the Use
Program Name for File Name field. This name can be any valid name; it
does not need to be the name of any of your programs. Names of the
following form are created:
v Sequential data sets:

’proj_qual.program_name.file_type’

For example: 'YOUNG.SAMPLE.COB01.BRKTAB'
v Partitioned data sets:

’proj_qual.file_type(program_name)’

For example: 'YOUNG.SAMPLE.BRKTAB(COB01)'

Input Files
The names of the control file, breakpoint table, and breakout data sets.

JCL Dsn
The name of the JCL data set that contains the JCL for this action.

Default: If you set the Use Program Name for File Name field to YES,
then the member name or program name qualifier of the data set will be
Rxxxxxxx, where xxxxxxx is the last seven characters of the program name.

Type The type of summary report to be produced.
Internal

The report contains information about each program area.
External

The report contains information with all program areas combined.

This option is ignored for assembler program areas.

Inline For languages for which Coverage Utility supports optimized code, the
summary processor might include or ignore counts and percentages from
inline code.
I Include all lines of inline code in the summary counts and

percentages.
N Do not include inline code in the summary counts and

percentages.

Report Dsn
The name of the data set that contains the summary and annotated listing
report.

Related concepts
“The effects of inlining” on page 132

106 Debug Tool V13.1 Coverage Utility User's Guide and Messages

Creating export JCL by using the panels
To export coverage data to a file in XML format, select option 3 on the Create
Reports panel. Use the Create JCL for Exporting Data panel, here, to specify
necessary options and parameters.

The options and fields on the panel are as follows:

Generate
Generates JCL from the parameters that you specify on the panel.

Edit Displays an ISPF edit session where you can change existing JCL.

Submit
Submits for execution the JCL that you specify in the JCL Dsn field on this
panel.

Use Program Name for File Name
Enter YES if you want to construct the data set names from the default
high-level qualifier, the specified program name, and the default low-level
qualifier for each data set.

When you press Enter, the file names on the panel are changed
automatically. Coverage Utility usually constructs the data set names by
using the program name.

Program Name
The name to use for Coverage Utility files when you enter YES in the Use
Program Name for File Name field. This name can be any valid name; it
does not need to be the name of any of your programs. Names of the
following form are created:
v Sequential data sets:

’proj_qual.program_name.file_type’

For example: 'YOUNG.SAMPLE.COB01.BRKTAB'
v Partitioned data sets:

’proj_qual.file_type(program_name)’

------------------------ Create JCL for Exporting Data ------------------------
Option ===>

1 Generate Generate JCL from parameters
2 Edit Edit JCL
3 Submit Submit JCL

Enter END to Terminate

Use Program Name for File Name YES (Yes|No) Program Name COB01

Input Files:
Breakpoint Table Dsn. ’YOUNG.SAMPLE.COB01.BRKTAB’
Breakout Dsn. ’YOUNG.SAMPLE.COB01.BRKOUT’

JCL Library and Member:
JCL Dsn ’YOUNG.SAMPLE.JCL(MCOB01)’

Output Options and XML File:
Branch Analysis . . . NO (Yes|No)
Frequency NO (Yes|No)
BP Details. NO (Yes|No)
XML Dsn ’YOUNG.SAMPLE.COB01.XML’

Chapter 9. Creating reports 107

For example: 'YOUNG.SAMPLE.BRKTAB(COB01)'

Input Files
The names of the breakpoint table and breakout data sets.

JCL Dsn
The name of the JCL data set that contains the JCL for this action.

Default: If you set the Use Program Name for File Name field to YES,
then the member name or program name qualifier of the data set will be
Rxxxxxxx, where xxxxxxx is the last seven characters of the program name.

Branch Analysis
Specifies whether the exported file is to contain branch analysis
information.
Yes The XML file contains branch analysis information (if it was

collected during the coverage run).
No Branch analysis information is excluded from the XML file.

Frequency
Specifies whether the exported file is to contain information about the
number of times that a statement was executed.
Yes The XML file contains frequency information (if it was collected

during the coverage run).
No Frequency information will be excluded from the XML file.

BP Details
Specifies whether the exported file is to contain detailed breakpoint
information.
Yes The XML file contains detailed information about each breakpoint

in the program.
No Breakpoint details will be excluded from the XML file.

XML Dsn
The name of the data set to contain the coverage data in XML format.

108 Debug Tool V13.1 Coverage Utility User's Guide and Messages

Chapter 10. Summary report

The summary report gives statistics about the coverage of all program areas (PAs)
during the test run. The summary report is divided into these sections:

Program Area Data
Lists summary data for each program area. Lists the total number of code
statements and the number that were executed. Also lists the total number
of branches and the number of branches executed.

Unexecuted Code
Lists the unexecuted code statements in each program area.

Branches That Have Not Gone Both Ways
Lists the conditional branches that have not executed in both directions for
each program area.

Each section of a report contains the date, time, and test case ID (if provided) of
the Coverage Utility test run. You can provide the test case ID with the
EQACUOID command during a monitor session. A summary of data for all
program areas is displayed following the PA-specific data.

“Example: COBOL summary report” on page 111
“Example: PL/I summary report” on page 114
“Example: C summary report” on page 115
“Example: Assembler summary report” on page 116
Related concepts
Chapter 12, “Report differences for optimized C/C++ code,” on page 131
Related references
“EQACUOID (Add ID)” on page 85

Sections of the summary report
Each section of the report includes a program identification area. This information
gives the load module name, procedure name, and listing name for the program.

The columns in the PROGRAM IDENTIFICATION area are:

PA The number of the program area (PA)

LOAD MOD
The name of the load module.

PROCEDURE

For COBOL: Paragraph name. Section names are listed only if they contain
statements outside of paragraphs. For Enterprise COBOL for z/OS Version
5, the PROGRAM-ID is used for the procedure name rather than the
paragraph or section name.

For PL/I: Procedure, ON-unit, or Begin-block name (a user-supplied label,
the compiler-generated name, or a Coverage Utility-generated name).

For C/C++: Function name.

For ASM: CSECT name.

© Copyright IBM Corp. 1992, 2014 109

Each time when a CSECT is interrupted by another CSECT and the
original CSECT is resumed subsequently, a new program area is generated.
For example, the following code creates three program areas (C1, C2, and
C1):
C1 CSECT

. . .
C2 CSECT

. . .
C1 CSECT

. . .

Program areas occur in the order as they do in the generated assembler
code.

LISTING NAME
The name of the listing . If the listing name is longer than 40 characters,
only the right-most 40 characters are shown.

PROGRAM AREA DATA section
The section of the report called PROGRAM AREA DATA contains coverage
statistics in addition to the program identification information.

The columns in the coverage statistics area are:

STATEMENTS: TOTAL
The statements of code for this test case run.

Assembler only: The number of executable assembler statements in the
program. Data areas that occur anywhere in the listing are excluded from
this count.

STATEMENTS: EXEC
The statements of code that executed.

Assembler only: The number of executable assembler statements that
executed.

STATEMENTS: %
The percentage of statements that executed

BRANCHES: CPATH
The number of conditional branch paths (the number of conditional
branches multiplied by 2).

BRANCHES: TAKEN
The number of conditional branch paths that executed.

BRANCHES: %
The percentage of conditional branch paths that executed.

UNEXECUTED CODE section
The section of the report called UNEXECUTED CODE contains information for
unexecuted code segments in addition to the program identification information.

The columns for this area are:

start The line or statement number of the first unexecuted instruction in this
unexecuted segment.

110 Debug Tool V13.1 Coverage Utility User's Guide and Messages

Assembler only: The offset within the program area of the first
unexecuted instruction in this unexecuted segment.
.

end The line or statement number of the last unexecuted instruction in this
unexecuted segment.

Assembler only: The offset within the program area of the last unexecuted
instruction in this unexecuted segment.

The number that appears for start and end is the number that is used to identify
each line or statement in the compiler listing. It is either a compiler-assigned
statement number or a composite line number, depending on the compiler and, in
some cases, the compiler options in effect.

BRANCHES THAT HAVE NOT GONE BOTH WAYS section
The section of the report called BRANCHES THAT HAVE NOT GONE BOTH
WAYS contains the following information in addition to the program identification:

stmt The line or statement number of the conditional branch instruction that did
not execute in both directions.

Assembler only: The offset within the program area of the conditional
branch instruction that did not execute in both directions.

The number that appears for stmt is the number that is used to identify each line
or statement in the compiler listing. It is either a compiler-assigned statement
number or a composite line number, depending on the compiler and, in some
cases, the compiler options in effect.

Example: COBOL summary report
The following example uses the INTERNAL option to create the summary report
for a set of COBOL routines. Paragraphs and their related statistics are displayed
on separate lines. If you use the EXTERNAL option, statistics for all paragraphs in
an external PROGRAM-ID are combined into one line.

In this example, the Performance Mode flag is set to N. The default is Y.

Chapter 10. Summary report 111

Related concepts
“Suppression of conditional branch coverage with performance mode” on page
117

********* DTCU SUMMARY: PROGRAM AREA DATA ********
DATE: 07/01/2002
TIME: 08:10:36

TEST CASE ID:
|<-- PROGRAM IDENTIFICATION -->|
| | | STATEMENTS: | BRANCHES: |
| PA LOAD MOD PROCEDURE | LISTING NAME | TOTAL EXEC % | CPATH TAKEN % |
--

1 COB01 PROG YOUNG.SAMPLE.COBOLST(COB01A) 6 6 100.0 0 0 100.0
2 PROGA 5 4 80.0 6 5 83.3
3 PROCA 1 0 0.0 0 0 100.0
4 LOOP1 3 3 100.0 2 1 50.0
5 LOOP2 2 2 100.0 2 1 50.0
6 COB01 PROGB YOUNG.SAMPLE.COBOLST(COB01B) 6 5 83.3 6 4 66.7
7 PROCB 1 1 100.0 0 0 100.0
8 LOOP1 3 3 100.0 2 1 50.0
9 COB01 PROGC YOUNG.SAMPLE.COBOLST(COB01C) 5 5 100.0 6 6 100.0
10 PROCC 3 2 66.7 2 1 50.0
11 LOOP1 4 3 75.0 4 2 50.0
12 LOOP2 2 2 100.0 2 1 50.0
13 COB01 PROGD YOUNG.SAMPLE.COBOLST(COB01D) 4 0 0.0 4 0 0.0
14 PROCD 1 0 0.0 0 0 100.0
15 LOOP1 1 0 0.0 0 0 100.0

--
Summary for all PAs: 47 36 76.6 36 22 61.1

********* DTCU SUMMARY: UNEXECUTED CODE ********
DATE: 07/01/2002
TIME: 08:10:36

TEST CASE ID:
|<-- PROGRAM IDENTIFICATION -->|
| | |
| PA LOAD MOD PROCEDURE | LISTING NAME | start end start end start end
--

2 COB01 PROGA YOUNG.SAMPLE.COBOLST(COB01A) 58 58
3 PROCA 68 68
6 COB01 PROGB YOUNG.SAMPLE.COBOLST(COB01B) 40 40
10 COB01 PROCC YOUNG.SAMPLE.COBOLST(COB01C) 46 46
11 LOOP1 55 55
13 COB01 PROGD YOUNG.SAMPLE.COBOLST(COB01D) 32 37
14 PROCD 41 41
15 LOOP1 45 45

--

********* DTCU SUMMARY: BRANCHES THAT HAVE NOT GONE BOTH WAYS ********
DATE: 07/01/2002
TIME: 08:10:36

TEST CASE ID:
|<-- PROGRAM IDENTIFICATION -->|
| | |
| PA LOAD MOD PROCEDURE | LISTING NAME | stmt stmt stmt stmt
--

2 COB01 PROGA YOUNG.SAMPLE.COBOLST(COB01A) 56
4 LOOP1 71
5 LOOP2 76
6 COB01 PROGB YOUNG.SAMPLE.COBOLST(COB01B) 34 38
8 LOOP1 48
10 COB01 PROCC YOUNG.SAMPLE.COBOLST(COB01C) 44
11 LOOP1 51 53
12 LOOP2 59
13 COB01 PROGD YOUNG.SAMPLE.COBOLST(COB01D) 32 34

--

112 Debug Tool V13.1 Coverage Utility User's Guide and Messages

Example: COBOL summary report (Enterprise COBOL for z/OS Version
5)

You can use the INTERNAL option to create the summary report for a set of
COBOL routines that is shown in this example. PROGRAM-IDs and their related
statistics appear on separate lines. If the EXTERNAL option had been used,
statistics for all the PROGRAM-IDs in an external PROGRAM-ID would have been
combined into one line.

This example was run with the Performance Mode flag at to N, (the default is Y).

Related concepts
“Suppression of conditional branch coverage with performance mode” on page
117

********* DTCU SUMMARY: PROGRAM AREA DATA ********
DATE: 04/18/2013
TIME: 12:52:51

TEST CASE ID:
|<-- PROGRAM IDENTIFICATION -->|
| | | STATEMENTS: | BRANCHES: |
| PA LOAD MOD PROCEDURE | LISTING NAME | TOTAL EXEC % | CPATH TAKEN % |
--

1 COB01 COB01A YOUNG.SAMPLE.COBOLST(COB01A) 17 15 88.2 10 7 70.0
2 COB01 COB01B YOUNG.SAMPLE.COBOLST(COB01B) 10 9 90.0 8 5 62.5
3 COB01 COB01C YOUNG.SAMPLE.COBOLST(COB01C) 14 12 85.7 14 10 71.4
4 COB01 COB01D YOUNG.SAMPLE.COBOLST(COB01D) 6 0 0.0 4 0 0.0

--
Summary for all PAs: 47 36 76.6 36 22 61.1

********* DTCU SUMMARY: UNEXECUTED CODE ********
DATE: 04/18/2013
TIME: 12:52:51

TEST CASE ID:
|<-- PROGRAM IDENTIFICATION -->|
| | |
| PA LOAD MOD PROCEDURE | LISTING NAME | start end start end start end
--

1 COB01 COB01A YOUNG.SAMPLE.COBOLST(COB01A) 58 58 68 68
2 COB01 COB01B YOUNG.SAMPLE.COBOLST(COB01B) 40 40
3 COB01 COB01C YOUNG.SAMPLE.COBOLST(COB01C) 46 46 55 55
4 COB01 COB01D YOUNG.SAMPLE.COBOLST(COB01D) 32 45

--

********* DTCU SUMMARY: BRANCHES THAT HAVE NOT GONE BOTH WAYS ********
DATE: 04/18/2013
TIME: 12:52:51

TEST CASE ID:
|<-- PROGRAM IDENTIFICATION -->|
| | |
| PA LOAD MOD PROCEDURE | LISTING NAME | stmt stmt stmt stmt stmt
--

1 COB01 COB01A YOUNG.SAMPLE.COBOLST(COB01A) 56 71 76
2 COB01 COB01B YOUNG.SAMPLE.COBOLST(COB01B) 34 38 48
3 COB01 COB01C YOUNG.SAMPLE.COBOLST(COB01C) 44 51 53 59
4 COB01 COB01D YOUNG.SAMPLE.COBOLST(COB01D) 32 34

--

Chapter 10. Summary report 113

Example: PL/I summary report
The INTERNAL option was used to create the summary report for a set of PL/I
routines shown in this example. Procedures, ON-units, Begin-blocks, and their
related statistics are shown on separate lines. If the EXTERNAL option had been
used, statistics for all procedures, ON-units, and Begin-blocks in the object module
would have been combined on one line.

This example was run with the Performance Mode flag set to N, (the default is Y).

Related concepts

********* DTCU SUMMARY: PROGRAM AREA DATA ********
DATE: 07/01/2002
TIME: 08:11:49

TEST CASE ID:
|<-- PROGRAM IDENTIFICATION -->|
| | | STATEMENTS: | BRANCHES: |
| PA LOAD MOD PROCEDURE | LISTING NAME | TOTAL EXEC % | CPATH TAKEN % |
--

1 PLI01 PLI01A YOUNG.SAMPLE.PLILST(PLI01A) 9 9 100.0 6 5 83.3
2 PROC2A 2 0 0.0 0 0 100.0
3 PLI01 PLI01B YOUNG.SAMPLE.PLILST(PLI01B) 11 8 72.7 6 4 66.7
4 PROC1 2 2 100.0 0 0 100.0
5 PLI01 PLI01C YOUNG.SAMPLE.PLILST(PLI01C) 7 4 57.1 6 3 50.0
6 PROC1 4 3 75.0 2 1 50.0
7 PLI01 PLI01D YOUNG.SAMPLE.PLILST(PLI01D) 2 0 0.0 2 0 0.0
8 PROC1 4 0 0.0 2 0 0.0

--
Summary for all PAs: 41 26 63.4 24 13 54.2

********* DTCU SUMMARY: UNEXECUTED CODE ********
DATE: 07/01/2002
TIME: 08:11:49

TEST CASE ID:
|<-- PROGRAM IDENTIFICATION -->|
| | |
| PA LOAD MOD PROCEDURE | LISTING NAME | start end start end start end
--

2 PLI01 PROC2A YOUNG.SAMPLE.PLILST(PLI01A) 17 18
3 PLI01 PLI01B YOUNG.SAMPLE.PLILST(PLI01B) 9 9 15 16
5 PLI01 PLI01C YOUNG.SAMPLE.PLILST(PLI01C) 6 6 10 11
6 PROC1 16 16
7 PLI01 PLI01D YOUNG.SAMPLE.PLILST(PLI01D) 3 11
8 PROC1 6 10

--

********* DTCU SUMMARY: BRANCHES THAT HAVE NOT GONE BOTH WAYS ********
DATE: 07/01/2002
TIME: 08:11:49

TEST CASE ID:
|<-- PROGRAM IDENTIFICATION -->|
| | |
| PA LOAD MOD PROCEDURE | LISTING NAME | stmt stmt stmt
--

1 PLI01 PLI01A YOUNG.SAMPLE.PLILST(PLI01A) 10
3 PLI01 PLI01B YOUNG.SAMPLE.PLILST(PLI01B) 8 14
5 PLI01 PLI01C YOUNG.SAMPLE.PLILST(PLI01C) 5 8 9
6 PROC1 15
7 PLI01 PLI01D YOUNG.SAMPLE.PLILST(PLI01D) 3
8 PROC1 7

--

114 Debug Tool V13.1 Coverage Utility User's Guide and Messages

“Suppression of conditional branch coverage with performance mode” on page
117

Example: C summary report
The INTERNAL option was used to create the summary report for a set of C
routines shown in this example. Functions and their related statistics are shown on
separate lines. If the EXTERNAL option had been used, statistics for all functions
in the object module would have been combined on one line.

This example was run with the Performance Mode flag set to N, (the default is Y).

Chapter 10. Summary report 115

Related concepts
“Suppression of conditional branch coverage with performance mode” on page
117

Example: Assembler summary report
This example was run with the Performance Mode flag set to N, (the default is Y).

********* DTCU SUMMARY: PROGRAM AREA DATA ********
DATE: 07/01/2002
TIME: 08:12:22

TEST CASE ID:
|<-- PROGRAM IDENTIFICATION -->|
| | | STATEMENTS: | BRANCHES: |
| PA LOAD MOD PROCEDURE | LISTING NAME | TOTAL EXEC % | CPATH TAKEN % |
--

1 C01 PROCA YOUNG.SAMPLE.CLST(C01A) 2 0 0.0 0 0 100.0
2 main 10 9 90.0 10 7 70.0
3 C01 PROCB YOUNG.SAMPLE.CLST(C01B) 2 2 100.0 0 0 100.0
4 C01B 9 8 88.9 10 5 50.0
5 C01 PROCC YOUNG.SAMPLE.CLST(C01C) 4 3 75.0 2 1 50.0
6 C01C 8 6 75.0 8 3 37.5
7 C01 PROCD YOUNG.SAMPLE.CLST(C01D) 3 0 0.0 2 0 0.0
8 C01D 3 0 0.0 2 0 0.0

--
Summary for all PAs: 41 28 68.3 34 16 47.1

********* DTCU SUMMARY: UNEXECUTED CODE ********
DATE: 07/01/2002
TIME: 08:12:22

TEST CASE ID:
|<-- PROGRAM IDENTIFICATION -->|
| | |
| PA LOAD MOD PROCEDURE | LISTING NAME | start end start end start end
--

1 C01 PROCA YOUNG.SAMPLE.CLST(C01A) 29 31
2 main 25 25
4 C01 C01B YOUNG.SAMPLE.CLST(C01B) 26 27
5 C01 PROCC YOUNG.SAMPLE.CLST(C01C) 34 34
6 C01C 21 21 25 26
7 C01 PROCD YOUNG.SAMPLE.CLST(C01D) 21 25
8 C01D 15 19

--

********* DTCU SUMMARY: BRANCHES THAT HAVE NOT GONE BOTH WAYS ********
DATE: 07/01/2002
TIME: 08:12:22

TEST CASE ID:
|<-- PROGRAM IDENTIFICATION -->|
| | |
| PA LOAD MOD PROCEDURE | LISTING NAME | stmt stmt stmt stmt stmt
--

2 C01 main YOUNG.SAMPLE.CLST(C01A) 19 24 26
4 C01 C01B YOUNG.SAMPLE.CLST(C01B) 19 24 26 26
5 C01 PROCC YOUNG.SAMPLE.CLST(C01C) 32
6 C01C 19 23 25 25
7 C01 PROCD YOUNG.SAMPLE.CLST(C01D) 25
8 C01D 18

--

116 Debug Tool V13.1 Coverage Utility User's Guide and Messages

Suppression of conditional branch coverage with performance mode
When you enable performance mode during setup, the breakpoints for conditional
branches are not implemented and the conditional branch coverage data is not
collected. Therefore, the conditional branch coverage data is suppressed for
summary reports: the BRANCHES section in the PROGRAM AREA DATA sections
is blank, and the conditional branches are not listed in the BRANCHES THAT
HAVE NOT GONE BOTH WAYS section.

If you perform the summary on a test run where some object modules are tested
with performance mode enabled and some with it disabled, conditional branch
coverage is listed for the object modules that are tested with performance mode
disabled.

********* DTCU SUMMARY: PROGRAM AREA DATA ********
DATE: 07/01/2002
TIME: 08:11:13

TEST CASE ID:
|<-- PROGRAM IDENTIFICATION -->|
| | | STATEMENTS: | BRANCHES: |
| PA LOAD MOD PROCEDURE | LISTING NAME | TOTAL EXEC % | CPATH TAKEN % |

1 ASM01 TEST2 YOUNG.SAMPLE.ASMLST(ASM01A) 41 31 75.6 6 5 83.3
2 ASM01 TEST2B YOUNG.SAMPLE.ASMLST(ASM01B) 45 39 86.7 6 4 66.7
3 ASM01 TEST2C YOUNG.SAMPLE.ASMLST(ASM01C) 39 32 82.1 8 5 62.5
4 ASM01 TEST2D YOUNG.SAMPLE.ASMLST(ASM01D) 25 0 0.0 4 0 0.0

Summary for all PAs: 150 102 68.0 24 14 58.3

********* DTCU SUMMARY: UNEXECUTED CODE ********
DATE: 07/01/2002
TIME: 08:11:13

TEST CASE ID:
|<-- PROGRAM IDENTIFICATION -->|
| | |
| PA LOAD MOD PROCEDURE | LISTING NAME | start end start end start end

1 ASM01 TEST2 YOUNG.SAMPLE.ASMLST(ASM01A) 000056 000062 000086 0000A0
2 ASM01 TEST2B YOUNG.SAMPLE.ASMLST(ASM01B) 000050 00005A 000078 000082
3 ASM01 TEST2C YOUNG.SAMPLE.ASMLST(ASM01C) 000034 00003A 000050 00005A 000092 000098
4 ASM01 TEST2D YOUNG.SAMPLE.ASMLST(ASM01D) 000000 000000 000016 00006C

********* DTCU SUMMARY: BRANCHES THAT HAVE NOT GONE BOTH WAYS ********
DATE: 07/01/2002
TIME: 08:11:13

TEST CASE ID:
|<-- PROGRAM IDENTIFICATION -->|
| | |
| PA LOAD MOD PROCEDURE | LISTING NAME | stmt stmt stmt stmt stmt

1 ASM01 TEST2 YOUNG.SAMPLE.ASMLST(ASM01A) 000052
2 ASM01 TEST2B YOUNG.SAMPLE.ASMLST(ASM01B) 000040 00008C
3 ASM01 TEST2C YOUNG.SAMPLE.ASMLST(ASM01C) 000030 000064 00008E
4 ASM01 TEST2D YOUNG.SAMPLE.ASMLST(ASM01D) 000030 00005E

Chapter 10. Summary report 117

When you set performance mode off during setup, and then later enable it by the
EQACUOPN command, summary reports and annotated listing reports still
include conditional breakpoint information, although the data might be incomplete.

“Example: Summary report with performance mode enabled during setup”
Related tasks
“Using performance mode to reduce monitor overhead” on page 78

Example: Summary report with performance mode enabled
during setup

This summary report for a set of COBOL routines was generated with the
Performance Mode flag set to Y, the default. Hence it contains no statistics for
branches.

118 Debug Tool V13.1 Coverage Utility User's Guide and Messages

********* DTCU SUMMARY: PROGRAM AREA DATA ********
DATE: 07/01/2002
TIME: 10:07:13

TEST CASE ID:
|<-- PROGRAM IDENTIFICATION -->|
| | | STATEMENTS: | BRANCHES: |
| PA LOAD MOD PROCEDURE | LISTING NAME | TOTAL EXEC % | CPATH TAKEN % |
--

1 COB01 PROG YOUNG.SAMPLE.COBOLST(COB01A) 6 6 100.0
2 PROGA 5 4 80.0
3 PROCA 1 0 0.0
4 LOOP1 3 3 100.0
5 LOOP2 2 2 100.0
6 COB01 PROGB YOUNG.SAMPLE.COBOLST(COB01B) 6 5 83.3
7 PROCB 1 1 100.0
8 LOOP1 3 3 100.0
9 COB01 PROGC YOUNG.SAMPLE.COBOLST(COB01C) 5 5 100.0
10 PROCC 3 2 66.7
11 LOOP1 4 3 75.0
12 LOOP2 2 2 100.0
13 COB01 PROGD YOUNG.SAMPLE.COBOLST(COB01D) 4 0 0.0
14 PROCD 1 0 0.0
15 LOOP1 1 0 0.0

--
Summary for all PAs: 47 36 76.6 0 0 100.0

********* DTCU SUMMARY: UNEXECUTED CODE ********
DATE: 07/01/2002
TIME: 10:07:13

TEST CASE ID:
|<-- PROGRAM IDENTIFICATION -->|
| | |
| PA LOAD MOD PROCEDURE | LISTING NAME | start end start end start end
--

2 COB01 PROGA YOUNG.SAMPLE.COBOLST(COB01A) 58 58
3 PROCA 68 68
6 COB01 PROGB YOUNG.SAMPLE.COBOLST(COB01B) 40 40
10 COB01 PROCC YOUNG.SAMPLE.COBOLST(COB01C) 46 46
11 LOOP1 55 55
13 COB01 PROGD YOUNG.SAMPLE.COBOLST(COB01D) 32 37
14 PROCD 41 41
15 LOOP1 45 45

--

********* DTCU SUMMARY: BRANCHES THAT HAVE NOT GONE BOTH WAYS ********
DATE: 07/01/2002
TIME: 10:07:13

TEST CASE ID:
|<-- PROGRAM IDENTIFICATION -->|
| | |
| PA LOAD MOD PROCEDURE | LISTING NAME | stmt stmt stmt
--
--

Chapter 10. Summary report 119

120 Debug Tool V13.1 Coverage Utility User's Guide and Messages

Chapter 11. Annotated listing report

You can create two kinds of annotated listing reports to show code coverage:

All Every line of the listing is printed.

Unexecuted
Only unexecuted instructions and conditional branch instructions that have
not gone both ways are printed.

Each instruction line in the listing has an annotation character placed to the right
of the line or statement number to indicate what happened during the test run:
& A conditional branch instruction has executed both ways.
> A conditional branch instruction has branched, but not fallen through.
V A conditional branch instruction has fallen through, but not branched.
: A non-branch instruction has executed.
¬ An instruction has not executed.
@ Data area in the assembler listing.
% Unconditional branch that has been executed in the assembler listing

These characters are the defaults. You can replace them with any others that you
prefer by supplying a parameter to the report program.

You might see multiple annotations on a single source statement. Such annotations
occur when there are multiple logical segments in the generated machine code for
the source statement, such as a complex IF statement. For compilers that are
supported by the HTML Targeted Coverage Report, any annotation that would
overlay the source line is placed to the right of the source line.

The line or statement number is the number that is used to identify each line or
statement in the compiler listing. It is either a compiler-assigned statement number
or a composite line number, depending on the compiler and, in some cases, the
compiler options in effect.

The annotation of statements with conditional branches (&, >, V) is affected by
performance mode.

“Example: COBOL annotated listing report” on page 125
“Example: PL/I annotated listing report” on page 126
“Example: C annotated listing report” on page 127
“Example: Assembler annotated listing report” on page 128
Related concepts
“Changes in annotation symbols with performance mode” on page 123
Chapter 12, “Report differences for optimized C/C++ code,” on page 131

Selecting specific listings to annotate
You can create a summary report first, and then, based on the summary, decide to
produce annotated listing reports on certain program areas.

To select the specific listings that you want to annotate after completing a test run,
follow these steps:
1. Edit the Coverage Utility control file, leaving in the names of the listings that

you want to annotate:

© Copyright IBM Corp. 1992, 2014 121

|
|
|

a. Select option 1 from the Debug Tool Coverage Utility panel.
b. On the Work with the Control File panel, select option 1, which displays an

ISPF edit session. Use this edit session to modify the control file. (You can
also edit the control file directly by using the ISPF editor.)

c. Delete the unwanted listings. The easiest way to do this is to comment out
the line by putting an asterisk (*) in column 1.

2. Create the report JCL:
Select option 1 from the Create JCL for Summary and Annotation Report panel.

3. Submit the report JCL:
Select option 3 from the Create JCL for Summary and Annotation Report panel.
Coverage Utility produces an annotated listing report for each listing file that
you specify in the Coverage Utility control cards.
Related tasks
“Creating summary report JCL by using the panels” on page 103

Reducing the size of an annotated listing report
To save paper when printing an annotated listing report, you can reduce the size
of the report by printing only the lines with unexecuted code or that had
conditional branches that did not go both ways. In the Report Defaults section of
the Edit Defaults panel, specify U (display only unexecuted code) rather than A
(display all code) as the Report User Options variable, as shown at line �1�. Make
this change before generating the Summary and Annotation Report JCL:

122 Debug Tool V13.1 Coverage Utility User's Guide and Messages

Changes in annotation symbols with performance mode
When you enable performance mode during setup, the breakpoints for conditional
branches are not implemented and the conditional branch coverage data is not
collected. Therefore, the annotation in the generated report changes for conditional
statements such as IF, PERFORM (COBOL), DO WHILE (PL/I). Such statements
that were annotated with one conditional annotation symbol (>,V,&) per
conditional branch within the statement. are now annotated as follows:
v : (a colon), if the statement is executed
v One ¬ (a not symbol), if the statement is not executed

When you set performance mode off during setup, and then later enable it by the
EQACUOPN command, summary reports and annotated listing reports still
include conditional breakpoint information, although the data might be incomplete.

Related tasks
“Using performance mode to reduce monitor overhead” on page 78

------------------------------- Report Defaults -------------------------------
Combined Cntl Dsn. ’YOUNG.SAMPLE.CBCTL(COB01)’

Type CBCTL
DSORG. PDS (SEQ|PDS)

Combined Breakout Dsn. . . ’YOUNG.SAMPLE.COB01.CMBOUT’
Type CMBOUT
DSORG. SEQ (SEQ|PDS)

Jobcard Name YOUNG
Jobcard Operands (12345678),

YOUNG,NOTIFY=YOUNG,USER=YOUNG,
MSGCLASS=H,CLASS=A,REGION=32M,TIME=1

JES Control Cards.

Report File Dsn. ’YOUNG.SAMPLE.COB01.REPORT’
Summary File Dsn ’YOUNG.SAMPLE.COB01.SUMMARY’

Report File Type REPORT
Summary File Type. . . . SUMMARY
DSORG. SEQ (SEQ|PDS)
Alloc Parms. LRECL(133) RECFM(F B A) BLKSIZE(27930)

TRACKS SPACE(10 10)
DD Parms SPACE=(TRK,(10,10)),

DCB=(DSORG=PS,RECFM=FBA,LRECL=133,BLKSIZE=27930)
Summary Type INTERNAL (Internal|External)
Summary Assembler Stmts. . YES
Summary Inline N (I|N)
Annotation Symbols :¬>V%@& (* for default)
Report User Options. . . . U (A|U) �1�
Print Report File Dataset. YES (Yes|No)
Exported XML Dsn ’YOUNG.SAMPLE.COB01.XML’

XML File Type. XML
DSORG. SEQ (SEQ|PDS)
Alloc Parms. LRECL(32756) RECFM(V B) BLKSIZE(32760)

TRACKS SPACE(10 10)
DD Parms SPACE=(TRK,(10,10)),

DCB=(DSORG=PS,RECFM=VB,LRECL=32756,BLKSIZE=32760)
XML Branch Analysis. . . . NO (Yes|No)
XML Frequency. NO (Yes|No)
XML BP Details NO (Yes|No)

Chapter 11. Annotated listing report 123

Displaying execution counts in an annotated listing report
The number of times that each statement was executed can be displayed in an
annotated listing report. To do so, change the Frequency Count Mode and Debug
Mode flags in your setup defaults before you generate the JCL for the setup step.

To change your setup defaults do the following steps:
1. Select option 0 from the Debug Tool Coverage Utility panel. The Manipulate

Defaults panel is displayed.
2. Select option 1. The Edit Defaults panel is displayed.
3. In the Setup Defaults area of the panel, change Frequency Count Mode and

Debug Mode flags to Yes.

Every time that setup JCL is created, these flags are set. You can also change these
flags in setup JCL that has already been created. This change can be simpler than
changing the defaults (and then changing them back), if you want to get execution
counts for just one test run. To identify these flags in the parameters passed to the
setup program, see the comments in the created setup JCL.

When the Frequency Count Mode and Debug Mode flags are set to Yes,
breakpoints are left in storage for the entire test run instead of being removed after
their first execution. Each time that the breakpoint is executed, the count field is
incremenated. The execution counts are then saved in the BRKOUT file of coverage
results and displayed on the right hand side of the annotated listing report, as
shown here:

The execution counts for each statement are on the right between the right arrow
(>) and the left arrow (<). For example, statement 72 was executed five times and
statement 77 was executed two times.

Accuracy: The execution count might not be accurate for a statement in a PA that
contains only one statement. It is only 0 (not executed) or 1 (executed 1 or more
times).

Performance: Enabling Frequency Count Mode and Debug Mode will significantly
degrade the performance of the monitored program.

LineID PL SL ----+-*A-1-B--+----2----+----3----+----4----+----5----+----6----+----7-|--+----8 Map and Cross Reference
000058 ^ 1 PERFORM PROCA. >0000<
000059
000060
000061 & PERFORM LOOP2 UNTIL TAPARM2 = 0 >0001<
000062 .
000063 : STOP RUN >0001<
000064 .
000065
000066 PROCA.
000067 * PROCA NOT EXECUTED
000068 ^ MOVE 10 TO P1PARM1 >0000<
000069 .
000070 LOOP1.
000071 V IF TAPARM1 > 0 THEN >0005<
000072 : 1 SUBTRACT 1 FROM TAPARM1. >0005<
000073 : CALL ’COB01B’ >0005<
000074 .
000075 LOOP2.
000076 V IF TAPARM2 > 0 THEN >0002<
000077 : 1 SUBTRACT 1 FROM TAPARM2. >0002<
000078

124 Debug Tool V13.1 Coverage Utility User's Guide and Messages

Example: COBOL annotated listing report
This is an example of a COBOL annotated listing report in which all lines have
been printed.

This example was run with the Performance Mode flag set to N.

LineID PL SL ----+-*A-1-B--+----2----+----3----+----4----+----5----+----6----+----7-|
000001 * COB01A - COBOL EXAMPLE FOR DTCU
000002
000003 IDENTIFICATION DIVISION.
000004 PROGRAM-ID. COB01A.
000005 **
000006 * Licensed Materials - Property of IBM *
000007 * *
000008 * 5655-M18: Debug Tool for z/OS *
000009 * 5655-M19: Debug Tool Utilities and Advanced Functions for z/OS *
000010 * (C) Copyright IBM Corp. 1997, 2004 All Rights Reserved *
000011 * *
000012 * US Government Users Restricted Rights - Use, duplication or *
000013 * disclosure restricted by GSA ADP Schedule Contract with IBM *
000014 * Corp. *
000015 * *
000016 **
000017
000018
000019 ENVIRONMENT DIVISION.
000020
000021 DATA DIVISION.
000022
000023 WORKING-STORAGE SECTION.
000024 01 TAPARM1 PIC 99 VALUE 5.
000025 01 TAPARM2 PIC 99 VALUE 2.
000026 01 COB01B PIC X(6) VALUE ’COB01B’.
000027 01 P1PARM1 PIC 99 VALUE 0.
000028
000029 01 TASTRUCT.
000030 05 LOC-ID.
000031 10 STATE PIC X(2).
000032 10 CITY PIC X(3).
000033 05 OP-SYS PIC X(3).
000034
000035 PROCEDURE DIVISION.
000036
000037 * THE FOLLOWING ALWAYS PERFORMED
000038
000039 PROG.
000040 * ACCESS BY TOP LEVEL QUALIFIER
000041 : MOVE ’ILCHIMVS’ TO TASTRUCT
000042
000043 * ACCESS BY MID LEVEL QUALIFIERS
000044 : MOVE ’ILSPR’ TO LOC-ID
000045 : MOVE ’AIX’ TO OP-SYS
000046
000047 * ACCESS BY LOW LEVEL QUALIFIERS
000048 : MOVE ’KY’ TO STATE
000049 : MOVE ’LEX’ TO CITY
000050 : MOVE ’VM ’ TO OP-SYS
000051 .
000052

Chapter 11. Annotated listing report 125

Related concepts
“Changes in annotation symbols with performance mode” on page 123

Example: PL/I annotated listing report
This is an example of a PL/I annotated listing report in which all lines have been
printed.

This example was run with the Performance Mode flag set to N.

000053 PROGA.
000054 & PERFORM LOOP1 UNTIL TAPARM1 = 0
000055
000056 > IF TAPARM2 = 0 THEN
000057 * PROCA NOT EXECUTED
000058 ¬ 1 PERFORM PROCA.
000059
000060 000061 & PERFORM LOOP2 UNTIL TAPARM2 = 0
000062 .
000063 : STOP RUN
000064 .
000065
000066 PROCA.
000067 * PROCA NOT EXECUTED
000068 ¬ MOVE 10 TO P1PARM1
000069 .
000070 LOOP1.
000071 V IF TAPARM1 > 0 THEN
000072 : 1 SUBTRACT 1 FROM TAPARM1.
000073 : CALL ’COB01B’
000074 .
000075 LOOP2.
000076 V IF TAPARM2 > 0 THEN
000077 : 1 SUBTRACT 1 FROM TAPARM2.
000078

126 Debug Tool V13.1 Coverage Utility User's Guide and Messages

Related concepts
“Changes in annotation symbols with performance mode” on page 123

Example: C annotated listing report
This is an example of a C annotated listing report in which all lines have been
printed.

This example was run with the Performance Mode flag set to N.

STMT

1 PLI01A:PROC OPTIONS(MAIN); /* PL/I DTCU TESTCASE */
/**/
/* Licensed Materials - Property of IBM */
/* */
/* 5655-M18: Debug Tool for z/OS */
/* 5655-M19: Debug Tool Utilities and Advanced Functions for z/OS */
/* (C) Copyright IBM Corp. 1997, 2004 All Rights Reserved */
/* */
/* US Government Users Restricted Rights - Use, duplication or */
/* disclosure restricted by GSA ADP Schedule Contract with IBM Corp.*/
/* */
/**/

2 DCL EXPARM1 FIXED BIN(31) INIT(5);
3 DCL EXPARM2 FIXED BIN(31) INIT(2);
4 DCL PARM2 FIXED BIN(31) INIT(2);
5 DCL PLI01B EXTERNAL ENTRY; /* */
6& DO WHILE (EXPARM1 > 0); /* THIS DO LOOP EXECUTED 5 TIMES*/
7: EXPARM1 = EXPARM1 -1; /* */
8: CALL PLI01B(PARM2); /* PLI01B CALLED 5 TIMES */
9: END;
10> IF (EXPARM2 = 0) THEN /* THIS BRANCH ALWAYS TAKEN */

CALL PROC2A(EXPARM2); /* PROC2A NEVER CALLED */
11& DO WHILE (EXPARM2 > 0); /* DO LOOP EXECUTED TWICE */
12: EXPARM2 = EXPARM2 - 1;
13: END;
14: RETURN;

15 PROC2A: PROCEDURE(P1PARM1); /* THIS PROCEDURE NEVER EXECUTED */
16 DCL P1PARM1 FIXED BIN(31);
17¬ P1PARM1 = 10;
18¬ END PROC2A;
19 END PLI01A;

Chapter 11. Annotated listing report 127

Related concepts
“Changes in annotation symbols with performance mode” on page 123

Example: Assembler annotated listing report
This is an example of an Assembler annotated listing report in which all lines have
been printed.

This example was run with the Performance Mode flag set to N.

LINE STMT SEQNBR INCNO
...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8....+....9....+..

1 | main() | 1
2 | /**/ | 2
3 | /* Licensed Materials - Property of IBM */ | 3
4 | /* */ | 4
5 | /* 5655-M18: Debug Tool for z/OS */ | 5
6 | /* 5655-M19: Debug Tool Utilities and Advanced Functions for z/OS */ | 6
7 | /* (C) Copyright IBM Corp. 1997, 2004 All Rights Reserved */ | 7
8 | /* */ | 8
9 | /* US Government Users Restricted Rights - Use, duplication or */ | 9
10 | /* disclosure restricted by GSA ADP Schedule Contract with IBM Corp.*/ | 10
11 | /* */ | 11
12 | /**/ | 12
13 | | 13
14 | { | 14
15: 1 | int EXPARM1 = 5; | 15
16: 2 | int EXPARM2 = 2; | 16
17 | extern void C01B(void); | 17
18 | void PROCA(int); /* function not called */ | 18
19V& 3 | while (EXPARM1 > 0) /* execute loop 5 times */ | 19
20 | { | 20
21: 4 | EXPARM1 = EXPARM1 -1; | 21
22: 5 | C01B(); /* call C01B 5 times */ | 22
23 | } | 23
24> 6 | if (EXPARM2 == 0) /* branch taken */ | 24
25¬ 7 | PROCA(EXPARM2); /* not executed */ | 25
26V& 8 | while (EXPARM2 > 0) /* loop execute 2 times */ | 26
27: 9 | EXPARM2 = EXPARM2 - 1; /* executed twice */ | 27
28: | } | 28
29¬ | void PROCA(int P1PARM1) /* function not called */ | 29
30 | { | 30
31¬ 10 | P1PARM1 = 10; /* not executed */ | 31
32 | } | 32

128 Debug Tool V13.1 Coverage Utility User's Guide and Messages

Loc Object Code Addr1 Addr2 Stmt Source Statement HLASM R4.0 2002/07/01 07.20
1 **
2 * Licensed Materials - Property of IBM *
3 * *
4 * 5655-M18: Debug Tool for z/OS *
5 * 5655-M19: Debug Tool Utilities and Advanced Functions for z/OS *
6 * (C) Copyright IBM Corp. 1997, 2004 All Rights Reserved *
7 * *
8 * US Government Users Restricted Rights - Use, duplication or *
9 * disclosure restricted by GSA ADP Schedule Contract with IBM *
10 * Corp. *
11 * *
12 **
13 *
14 **
15 * *
16 * DTCU ASSEMBLER TESTCASE. *
17 * *
18 **

000000 00000 00110 19 TEST2 CSECT , 01S0001
000000 20 @MAINENT DS 0H 01S0001

R:F 00000 21 USING *,@15 01S0001
000000 47F0 F016 00016 22% B @PROLOG 01S0001
000004 10 23@ DC AL1(16) 01S0001
000005 E3C5E2E3F2404040 24@ DC C’TEST2 97.295’ 01S0001

25 DROP @15
000015 00
000016 90EC D00C 0000C 26:@PROLOG STM @14,@12,12(@13) 01S0001
00001A 18CF 27: LR @12,@15 01S0001

00000 28 @PSTART EQU TEST2 01S0001
R:C 00000 29 USING @PSTART,@12 01S0001

00001C 50D0 C0B0 000B0 30: ST @13,@SA00001+4 01S0001
000020 41E0 C0AC 000AC 31: LA @14,@SA00001 01S0001
000024 50E0 D008 00008 32: ST @14,8(,@13) 01S0001
000028 18DE 33: LR @13,@14 01S0001

34 * DO WHILE(EXPARM1>0); /* THIS DO LOOP EXECUTED 5 TIMES */
00002A 47F0 C042 00042 35% B @DE00006 01S0006
00002E 36 @DL00006 DS 0H 01S0007

37 * EXPARM1 = EXPARM1 - 1; /* */
00002E 5810 C100 00100 38: L @01,EXPARM1 01S0007
000032 0610 39: BCTR @01,0 01S0007
000034 5010 C100 00100 40: ST @01,EXPARM1 01S0007

41 * CALL TEST2B(PARM2); /* TEST2B CALLED 5 TIMES */
000038 58F0 C0F8 000F8 42: L @15,@CV00063 01S0008
00003C 4110 C0A4 000A4 43: LA @01,@AL00002 01S0008
000040 05EF 44% BALR @14,@15 01S0008

45 * END;
000042 5800 C100 00100 46:@DE00006 L @00,EXPARM1 01S0009
000046 1200 47: LTR @00,@00 01S0009
000048 4720 C02E 0002E 48& BP @DL00006 01S0009

49 * IF (EXPARM2 = 0) THEN /* THIS BRANCH ALWAYS TAKEN */
00004C 5810 C104 00104 50: L @01,EXPARM2 01S0010
000050 1211 51: LTR @01,@01 01S0010
000052 4770 C06C 0006C 52> BNZ @RF00010 01S0010

53 * CALL PROC1(EXPARM2); /* PROC1 NEVER CALLED */
000056 4110 C0A8 000A8 54^ LA @01,@AL00003 01S0011
00005A 45E0 C086 00086 55^ BAL @14,PROC1 01S0011

56 * DO WHILE(EXPARM2>0); /* DO LOOP EXECUTED TWICE */
00005E 47F0 C06C 0006C 57^ B @DE00012 01S0012
000062 58 @DL00012 DS 0H 01S0013

59 * EXPARM2 = EXPARM2 - 1; 01S0013
000062 5820 C104 00104 60: L @02,EXPARM2 01S0013
000066 0620 61: BCTR @02,0 01S0013
000068 5020 C104 00104 62: ST @02,EXPARM2 01S0013

63 * END; 01S0014

Chapter 11. Annotated listing report 129

Related concepts
“Changes in annotation symbols with performance mode” on page 123

00006C 5830 C104 00104 64:@DE00012 L @03,EXPARM2 01S0014
000070 1233 65: LTR @03,@03 01S0014
000072 4720 C062 00062 66& BP @DL00012 01S0014

67 * RETURN CODE(0); 01S0015
000076 1FFF 68: SLR @15,@15 01S0015
000078 58D0 D004 00004 69: L @13,4(,@13) 01S0015
00007C 58E0 D00C 0000C 70: L @14,12(,@13) 01S0015
000080 980C D014 00014 71: LM @00,@12,20(@13) 01S0015
000084 07FE 72% BR @14 01S0015

73 * END TEST2; 01S0020
74 *PROC1: 01S0016
75 * PROCEDURE(P1PARM1); /* THIS PROCEDURE NEVER EXECUTED */

000086 90EC D00C 0000C 76^PROC1 STM @14,@12,12(@13) 01S0016
00008A D203 C0F4 1000 000F4 00000 77^ MVC @PC00002(4),0(@01) 01S0016

78 * P1PARM1 = 10; 01S0018
000090 5820 C0F4 000F4 79^ L @02,@PA00064 01S0018
000094 4130 000A 0000A 80^ LA @03,10 01S0018
000098 5030 2000 00000 81^ ST @03,P1PARM1(,@02) 01S0018

82 * END PROC1; 01S0019
00009C 83 @EL00002 DS 0H 01S0019
00009C 84 @EF00002 DS 0H 01S0019
00009C 98EC D00C 0000C 85^@ER00002 LM @14,@12,12(@13) 01S0019
0000A0 07FE 86^ BR @14 01S0019
0000A2 87 @DATA DS 0H
0000A4 88 DS 0F
0000A4 89 @AL00002 DS 0A
0000A4 00000108 90@ DC A(PARM2)
0000A8 91 @AL00003 DS 0A
0000A8 00000104 92@ DC A(EXPARM2)
0000AC 93 DS 0F
0000AC 94@@SA00001 DS 18F
0000F4 95@@PC00002 DS 1F
0000F8 96 DS 0F
0000F8 00000000 97@@CV00063 DC V(TEST2B)
000100 98 LTORG
000100 99 DS 0D
000100 00000005 100@EXPARM1 DC F’5’
000104 00000002 101@EXPARM2 DC F’2’
000108 00000002 102@PARM2 DC F’2’

00000 103 @DYNSIZE EQU 0
00000 104 @00 EQU 0
00001 105 @01 EQU 1
00002 106 @02 EQU 2
00003 107 @03 EQU 3
00004 108 @04 EQU 4
00005 109 @05 EQU 5
00006 110 @06 EQU 6
00007 111 @07 EQU 7
00008 112 @08 EQU 8
00009 113 @09 EQU 9
0000A 114 @10 EQU 10
0000B 115 @11 EQU 11
0000C 116 @12 EQU 12
0000D 117 @13 EQU 13
0000E 118 @14 EQU 14
0000F 119 @15 EQU 15
00000 00004 120 P1PARM1 EQU 0,4,C’F’
000F4 00004 121 @PA00064 EQU @PC00002,4,C’F’
0006C 122 @RF00010 EQU @DE00012

000110 123 DS 0D
00110 124 @ENDDATA EQU *
00110 125 @MODLEN EQU @ENDDATA-TEST2

126 END ,

130 Debug Tool V13.1 Coverage Utility User's Guide and Messages

Chapter 12. Report differences for optimized C/C++ code

Coverage Utility supports the processing of optimized code in C/C++ only. The
optimization techniques that compilers use modify the generated machine code.
When Coverage Utility processes this optimized code, the summary and annotated
listing reports usually contain differences from the same reports run on
unoptimized versions of the same code. This section describes the differences that
you should expect when you process optimized code.
v “The effects of code motion”
v “The effects of dead code elimination”
v “The effects of statement decomposition” on page 132
v “The effects of inlining” on page 132

Related references
“Compiler options required by Coverage Utility” on page 61

The effects of code motion
Sometimes the compiler detects that it can generate better machine code by
moving part or all of a statement to a different place in the execution flow. For
example, for the following high-level statements:
IF A=B THEN X=55;

ELSE Y=55;

the compiler might determine that it needs a constant of 55 on both the true and
false paths.

The compiler might then generate the following machine code:
L R1,=F’55’

*IF A=B
L R0,A
C R0,B
BNE FALSE

*THEN X=55;
ST R1,X
B BOTH

*ELSE Y=55;
FALSE ST R1,Y
BOTH ...

Coverage Utility uses the machine code that is generated by the compiler to
associate machine code with high-level statements. When the compiler indicates
that a machine instruction is part of a given statement, Coverage Utility associates
that statement with the instruction. Thus, instructions that are generated from a
different statement and moved due to optimization are reported as if they were
generated from the associated statement.

The effects of dead code elimination
Sometimes dead code is eliminated when the compiler detects that certain
executable instructions can never be reached. For example, while processing the
following high-level statements, the compiler might detect that the test of X=3 is
unnecessary and that the THEN code could never be reached:

© Copyright IBM Corp. 1992, 2014 131

X=1;
... (sequential instructions with no flow into this sequence)
G=5;
IF X=3 THEN A=C;
ELSE A=B;

In this case it might generate machine code such as:
*X=1;

(machine code for X=1)
*... (sequential instructions with no flow into this sequence)

(machine code for these instructions)
*G=5;

(machine code for G=5)
*A=B;

(machine code for A=B)

Note that there is no machine code for IF X=3 or for A=C.

If no machine code is detected for a statement, the statement is not annotated in
the annotated listing report and is not counted in the summary report.

The effects of statement decomposition
Sometimes the compiler detects that part of the code for a statement must be
located at a place other than the place where the original statement occurred. For
example, while processing the following high-level statement, the compiler might
generate part of the machine code for the DO statement at the DO statement and
part at the END statement:
DO I=A TO B;

...
END;

The way that this machine code is distributed can be altered by optimization. For
example, if the compiler can determine that A is less than B on entry to the loop, it
might be able to generate all or most of the code at the bottom of the loop (the
END statement). In other cases, it might generate most of the code at the DO
statement.

In general, whenever the statement number changes in the machine code,
Coverage Utility assumes that a segment of the code of the “new” statement is
being processed.

If any segment of a statement is executed, the annotation marks the statement as
executed, even when all generated instructions for the statement are not executed
due to statement decomposition.

The effects of inlining
A compiler puts a procedure inline when it generates the code of a called
procedure at the point of invocation, instead of generating machine instructions to
invoke the code for the procedure. This change might be done for some or all of
the invocations of the code. For example, when the compiler process the following
procedure COMPUTE, it might decide that in places where it can determine that
A=0, it will generate the code for A=1:
COMPUTE:

PROCEDURE(A,B);
IF A=0 THEN A=1;

132 Debug Tool V13.1 Coverage Utility User's Guide and Messages

ELSE DO;
(a lot of instructions)

END;
END;

In all other instances, it might generate the machine instructions that are needed to
invoke COMPUTE as out-of-line code.

When the C INLINE option or the C++ OPTIMIZE option is in effect, the compiler
might put inline invocations of some or all functions or procedures, depending on
the compiler options in effect and on characteristics of the source code. Whether
procedures and functions are inline affects your summary and annotated listing
reports.

When functions are put inline, coverage of conditional branches cannot be
accurately measured. During Coverage Utility setup, if performance mode is off
(that is, conditional branch coverage is requested) and functions are being put
inline; the Performance Mode flag is assumed to be on, and a message is issued.

Summary report with inline code
If a C/C++ function is defined as external, an out-of-line copy of the function will
always exist. If a C/C++ function is defined as static, an out-of-line copy of the
function might or might not exist depending on whether the compiler puts inline
all invocations of the function.

When a procedure or function is put inline, several different situations can occur
depending on whether an out-of-line copy of the procedure or function is
generated and on the setting of the summary INLINE option.

The following table shows the four combinations of these two possibilities:

Case
An out-of-line copy of the procedure or
function exists? Summary INLINE option is:

1 Yes N

2 Yes I

3 No N

4 No I

The following table shows what happens when a procedure or function is put
inline in each case:

Result Case 1 Case 2 Case 3 Case 4

The summary report has the name of the
procedure or function

Yes Yes No No

Associated statistics for the procedure or
function reflect accumulated statistics for all
copies of the procedure or function.

Yes Yes No No

Summary statistics for procedures or functions
that contain inline invocations of the procedure
or function reflect additional statistics for these
inline statements.

No Yes No Yes

Chapter 12. Report differences for optimized C/C++ code 133

For example, suppose that a function with 20 executable statements contains inline
invocations of other functions that contain a total of 40 executable statements. The
summary would list a total of 60 statements for that function.

Annotated listing report with inline code
The annotated listing report for inline C/C++ functions accurately reflects the
overall coverage of all copies of the function. Each source line of the function has
an annotation character that summarizes the execution state of all copies of that
source line.

134 Debug Tool V13.1 Coverage Utility User's Guide and Messages

Chapter 13. Report program parameters

You can specify parameters for the summary and report programs in your JCL to
determine what information is included in the reports and how the information is
presented. You can also specify parameters for the export data program to
determine what information is included in the output file.
v “Parameters for the summary and report programs”
v “Parameters for the export data program” on page 136

Parameters for the summary and report programs
This section describes the input parameters that you can specify in the PARM field
on the EXEC JCL statement for the summary and report programs.

Summary program parameters
The summary program (EQACUSUM) produces a summary report from test case
results. Its parameters are built automatically by the ISPF dialog. The syntax of the
parameter string is:

�� I
E � I

N
�common_parameters

��

Internal | External
I Summary with each program area listed separately.
E Combine all program areas into one entry per external procedure.

Assembler: This parameter is ignored for assembler.
� Represents one or more blanks.

Inline | NoInline

I Include inline code in the summary statistics.

N Do not include inline code.

Assembler: This parameter is ignored for assembler.

common_parameters
Any of the parameters that are common to multiple routines, separated by
blanks.

Related concepts
“The effects of inlining” on page 132
Related references
Appendix E, “Parameters that are common to multiple routines,” on page 205

Report program parameters
The report program (EQACURPT) produces annotated source listings from test
case results. Its parameters are built automatically by the ISPF dialog. The syntax
of this parameter string is:

© Copyright IBM Corp. 1992, 2014 135

�� A
U

� B
P
C
A

�

�
� listing_name

* � annotation_chars
* �common_parms

��

User code to display — This flag indicates which part of the user code is displayed
in the report.
A All user code is displayed.
U Only unexecuted user code is displayed.
� Represents one or more blanks.

Listing Type

B COBOL listing

P PL/I listing

C C/C++ listing

A assembler listing

listing_name
The fully-qualified name of the data set that contains the compiler listing. This
parameter is used only for VisualAge PL/I Version 2 Release 2, Enterprise
PL/I for z/OS and OS/390 and Enterprise PL/I for z/OS, and C/C++, in
which case it is required. In all other cases, it can be omitted if no following
parameters are present, or it can be specified as an asterisk if any following
parameters are present.

annotation_chars
List of annotation characters. If the default characters are to be used and you
specify any of the following parameters, you must specify an asterisk for this
parameter. The default list is as follows:

: ¬ > V % @ and &

common_parms
Any of the parameters that are common to multiple routines, separated by
blanks.

Related references
Chapter 11, “Annotated listing report,” on page 121
Appendix E, “Parameters that are common to multiple routines,” on page 205

Parameters for the export data program
This section describes the input parameters that you can specify in the PARM field
on the EXEC JCL statement for the export data program.

The export data program (EQACUXML) exports the coverage data in XML format.
Its parameters are built automatically by the ISPF dialog. The syntax of the
parameter string is:

136 Debug Tool V13.1 Coverage Utility User's Guide and Messages

��
B
N F �common_parameters

N P
N

��

Branch | NoBranch
B Include branch analysis data in the output file, if the data is available.
N Do not include branch analysis data in the output file.

Frequency | NoFrequency

F Include frequency data in the output file, if the data is available.

N Do not include frequency data in the output file.

BP | NoBP

P Include detailed breakpoint data in the output file.

N Do not include detailed breakpoint data in the output file.

� Represents one or more blanks.

common_parameters
Any of the parameters that are common to multiple routines, separated by
blanks.

Related references
Appendix E, “Parameters that are common to multiple routines,” on page 205

Chapter 13. Report program parameters 137

138 Debug Tool V13.1 Coverage Utility User's Guide and Messages

Chapter 14. HTML reports

The following topics describe how you can generate code coverage reports in an
HTML format.
v “HTML Annotated Listing Report”
v “HTML Targeted Coverage Report” on page 142

You can display these reports on a workstation by using an internet browser.
Unless otherwise noted, these HTML reports can be generated only for Enterprise
COBOL programs. You can generate these reports by entering commands or using
the panel interfaces; both methods are described in each topic.

HTML Annotated Listing Report
The HTML Annotated Listing Report takes as input a standard annotated listing
(described in Chapter 11, “Annotated listing report,” on page 121) and generates an
HTML form of the annotated listing. During the process it generates a new set of
statistics based strictly on the annotation symbols found in the annotated listing
report that was used as input. These statistics differ in several ways from those in
the original annotated listing report. These differences are described in “Format of
the HTML Annotated Listing Report” on page 141.

Creating an HTML Annotated Listing Report by using the
panel interface

To create an HTML Annotated Listing Report by using the panel interface, do the
following steps:
1. (Optional) Allocate the data set for the HTML Annotated Listing Report file,

specifying RECFM=VB and LRECL>=255. If you do not allocate the data set, a
data set is allocated for you.

2. Select option 5 of the Coverage Utility Create Reports panel to display the
Create HTML Annotated Listing Report panel. The follow example shows the
Create HTML Annotated Listing Report panel with sample input data:

---------------- Create HTML Annotated Listing Report ---------------
Option ===>

Input File:
Annotated Report Dsn. ’USER1.EQACUANS.TEST.REPORT(COB019)’

Output HTML Annotated Listing File:
Dsn ’USER1.EQACUANS.TEST.HTML(COB019)’

Colors:
Not Executed Pink
Branch Not Taken . . Yellow
Text Black
Background White
Headers Blue

3. Specify the Input File as a standard annotated listing report as described in
Chapter 11, “Annotated listing report,” on page 121.

4. Specify the output HTML annotated listing file.
5. Specify the colors that you want to use to highlight the following items:

© Copyright IBM Corp. 1992, 2014 139

Not Executed
The background color of lines that were not run.

Branch Not Taken
The background color of branches that were not taken both ways.

Text
The foreground color of text.

Background
The background color of normal text and headers.

Headers
The foreground color of text for headers.

You can specify any color name that is supported by the Web browser that you
are using.

Creating an HTML Annotated Listing Report by using the
command interface

You can use the EQACUANS command to generate the HTML Annotated Listing
Report.

The following diagram illustrates the syntax of the EQACUANS command:

�� EQACUANS inputdsn
outputdsn <

�

�
COLOR (, , , ,)

unexec brnottaken text backgrnd headers

��

The command parameters are described in the following list:

inputdsn
The DSName of an annotated listing report that is used as input to the
command. This must be a sequential data set or a PDS/PDSE with a member
name specified.

outputdsn
The data set name of the HTML Annotated Listing Report that is to be
generated. If you do not specify this parameter, a data set is generated by
replacing the lower-level qualifier of inputdsn with HTML. If this data set does
not exist, the command creates it. The required DCB attributes are RECFM=VB,
LRECL>=255. This must be a sequential data set or a PDS/PDSE with a
member name specified.

< A separator that is required if you do not specify an outputdsn variable and
you specify a COLOR parameter.

unexec
The background color to use for lines of unexecuted code. You can specify any
color name that is supported by a browser. The default color is pink.

brnottaken
The background color to use for lines of code containing a branch that was not
taken in both directions. You can specify any color name that is supported by a
browser. The default color is yellow.

text
The foreground color to use for lines of normal text. You can specify any color
name that is supported by a browser. The default color is black.

140 Debug Tool V13.1 Coverage Utility User's Guide and Messages

backgrnd
The background color to use for normal text. You can specify any color name
that is supported by a browser. The default color is white.

headers
The foreground color to use for headers. You can specify any color name that
is supported by a browser. The default color is blue.

If you specify fewer than five COLOR parameters, you can omit the commas for
the last parameters. For example, if you only want to specify a color for the
unexecuted lines of code, you can enter the following command:
EQACUANS USER1.EQACUANS.TEST.REPORT(COB01) < COLOR (orange)

Restrictions on creating an HTML Annotated Listing Report
The following restrictions apply:
v You can use this process only on Enterprise COBOL programs.
v This process cannot detect multiple statements on one line.
v If any annotation is detected on a line, this counts as one statement.
v If the only annotation on a line is "¬", this is counted as an unexecuted

statement.
v If any of the following annotations appear on a line, it is counted as an executed

statement: ":", "&", ">", "V".
v Branch analysis statistics are not as correct as statistics generated by the original

annotated listing report because this process cannot recognize statements
containing multiple branches when the annotations symbols have been
consolidated.

Format of the HTML Annotated Listing Report
The HTML Annotated Listing Report is divided into four sections.

The first section of the report contains the following information:
v Title
v Date and time the report was generated
v Test case ID, if specified

Sections two through four contain information similar to the information in a
summary report described in Chapter 10, “Summary report,” on page 109. The
following list describes the differences:
v The statistics displayed in an HTML Annotated Listing Report are generated

from the annotation symbols in the annotated listing. Therefore, the following
items cannot be detected and might result in statistics that do not match those in
the standard summary report:
– Multiple statements on a source line
– Multiple branches within a single source line or statement

v Each line containing one or more annotation symbols is counted as a statement.
v The Unexecuted Code and Branches That Have Not Gone Both Ways sections

contain links to the corresponding statements in the HTML annotated listing.

Following this summary information are the listings from the annotated listing
report. In these listings, lines containing statements that were not executed and
branches that were not taken both ways are highlighted.

Chapter 14. HTML reports 141

|

Example HTML Annotated Listing Report
The following example illustrates all four parts of an HTML Annotated Listing
Report:

Debug Tool Coverage Utility
HTML Annotated Listing Report
Date: 07/11/2002 Time: 13:17:48

Test Case ID:

Coverage Utility Annotated Summary

Program

Statements Branches

Total Exec % CPath Taken %

COB01A 17 15 88.24% 10 7 70.00%

COB01B 10 9 90.00% 8 5 62.50%

COB01C 14 12 85.71% 14 10 71.43%

COB01D 6 0 0.00% 0 0 0.00%

Total: 47 36 76.60% 32 22 0.00%

Unexecuted Code

Program Start-End Start-End Start-End Start-End

COB01A 58 68

COB01B 40

COB01C 46 55

COB01D 32-45

Branches That Have Not Gone Both Ways

Program Stmt Stmt Stmt Stmt Stmt Stmt Stmt Stmt Stmt

COB01A 56 71 76

COB01B 34 38 48

COB01C 44 51 53 59

HTML Targeted Coverage Report
The HTML Targeted Coverage Report generator takes as input a standard
annotated listing (described in Chapter 11, “Annotated listing report,” on page
121), old and new source data sets or a SuperC specifying the differences, and the
name of one or more Program-IDs. With this input, the report generator creates an
HTML form of the changed lines in the annotated listing. The report contains a full
or partial copy of the annotated listing Report with all highlighted annotated lines
that were changed between the old and new source files. During the process, it
generates a new set of statistics strictly based on the changed lines in the selected
Program-IDs and how they were annotated in the input annotated listing report.
Since only annotated lines are executable, changes to non-executable lines (for
example variable declarations and comments) are neither highlighted nor
considered in counters and statistics. These statistics differ in several ways from
those in the original annotated listing report. These differences are described in
“Format of the HTML Targeted Coverage Report” on page 150.

142 Debug Tool V13.1 Coverage Utility User's Guide and Messages

To create an HTML Targeted Coverage Report, you must use the following items
as input:
v One of the following items:

– The DSName of the old and new source files
– A SuperC compare listing that compares the old and new source files

(command interface only)
v A standard annotated listing, as described in Chapter 11, “Annotated listing

report,” on page 121.
v A COBOL Program-ID.

Specifying the COBOL Program-ID
The COBOL Program-ID is specified as the third parameter in the EQACUTRG
command (command interface) and in the COBOL Program-ID field on the Create
HTML Targeted Coverage Report panel (panel interface).

The value for the COBOL Program-ID field is a list of Program-ID name patterns
that are enclosed in parenthesis and separated by commas. The parenthesis are
optional for the panel interface and for the command interface when you specify a
single Program-ID.

A Program-ID name pattern is a string of characters that specify the individual
Program-IDs. If a Program-ID matches any of the patterns in the list, the
Program-ID is included in the HTML Targeted Coverage Report. To ensure that a
Program-ID name matches the pattern, each character in the Program-ID name
must be the same as the character in the corresponding position in the pattern.
Patterns might contain special pattern characters, '*' (asterisk) and '%' (percent
sign), which allow a single pattern to match many Program-IDs. Program-ID name
pattern has the following forms:
v The simplest Program-ID name pattern does not use either of the two special

pattern characters. This name pattern matches at most one Program-ID name,
which is identical to the pattern. For example, the pattern 'ABC' matches exactly
one name 'ABC'.

v The '%' (percent sign) character matches any one single character, no matter
what the character is. A pattern that contains '%' can match more than one
Program-ID name. For example, the pattern 'AB%D' matches names 'ABCD',
'ABFD', and 'ABZD'.

v The '*' (asterisk) character matches more than the '%' character. The character '*'
matches any number of characters, no matter what they are. For example, the
pattern 'ABC*' matches every name that starts with 'ABC', regardless of what
that name ends with.

For the panel interface
You can use the following Program-ID specifications in the panel interface:
v If you specify a pattern list with any pattern that contains a special pattern

character, a selection panel is displayed. In the selection panel, you can select the
Program-IDs that are to be included.

v If you specify a single asterisk for one of the patterns, the selection panel is
bypassed and all the Program-IDs are included.

v If you leave the COBOL Program-ID field blank, a selection panel that lists all
the Program-IDs in the annotated listing reports is displayed.

Panel interface example 1:

Chapter 14. HTML reports 143

------------------ Create HTML Targeted Coverage Report ------------------
Option ===>

Input:
Old COBOL source Dsn. ’USER1.TCO.COBOL(COB01A)’
New COBOL source Dsn. ’USER1.TCN.COBOL(COB01A)’
Annotated Report Dsn. ’USER1.EQACUANS.TEST.REPORT(COB01)’
COBOL Program-ID. . . *

Output HTML Targeted Coverage File:
Dsn ’USER1.TARG.HTML(COB01)’

Colors:
Executed Yellow
Not Executed Pink
Text Black
Background White

This panel indicates that all Program-IDs in USER1.EQACUANS.TEST.REPORT(COB01)
are to be included in the HTML Targeted Coverage Report. No selection panel is
displayed.

Panel interface example 2:

------------------ Create HTML Targeted Coverage Report ------------------
Option ===>

Input:
Old COBOL source Dsn. ’USER1.TCO.COBOL(COB01A)’
New COBOL source Dsn. ’USER1.TCN.COBOL(COB01A)’
Annotated Report Dsn. ’USER1.EQACUANS.TEST.REPORT(COB01)’
COBOL Program-ID. . . COB*

Output HTML Targeted Coverage File:
Dsn ’USER1.TARG.HTML(COB01)’

Colors:
Executed Yellow
Not Executed Pink
Text Black
Background White

This panel indicates that only Program-IDs in USER1.EQACUANS.TEST.REPORT(COB01)
whose first 3 characters are 'COB', regardless of what the Program-ID ends with,
are to be included in the selection panel list.

The selection panel looks similar to the following one:

Target USER1.SAMPLE.REPORT(COB01) Row 1 to 4 of 4

S in Select field to select Program-ID, blank to de-select
Commands: S|SEL|SELECT pattern, L|LOC|LOCATE program-id, END|EXIT, CANcel

Select Program-ID Date Time
- COB01A 02/06/2012 10:26:05
- COB01B 02/06/2012 16:26:05
- COB01C 02/06/2012 16:26:06
- COB01D 02/06/2012 16:26:07

******************************* Bottom of data ********************************

Command ===> Scroll ===> PAGE

Panel interface example 3:

144 Debug Tool V13.1 Coverage Utility User's Guide and Messages

------------------ Create HTML Targeted Coverage Report ------------------
Option ===>

Input:
Old COBOL source Dsn. ’USER1.TCO.COBOL(COB01A)’
New COBOL source Dsn. ’USER1.TCN.COBOL(COB01A)’
Annotated Report Dsn. ’USER1.EQACUANS.TEST.REPORT(COB01)’
COBOL Program-ID. . . COB01A,COB01B

Output HTML Targeted Coverage File:
Dsn ’USER1.TARG.HTML(COB01)’

Colors:
Executed Yellow
Not Executed Pink
Text Black
Background White

This panel indicates that the Program-IDs 'COB01A' and 'COB01B' in
USER1.EQACUANS.TEST.REPORT(COB01) are to be processed. Because no special
pattern characters are used, the selection panel is bypassed.

For the command interface
No selection panel is displayed, regardless of the Program-ID specification. Every
Program-ID that matches any of the Program-ID name patterns in the list is
included.

Command interface example 1:
EQACUTRG
(’USER1.TCO.COBOL’,’USER1.TCN.COBOL’)
’USER1.EQACUANS.TEST.REPORT(COB01)’
COB01%
’USER1.TARG.HTML(COB01)’

This command indicates that the Program-IDs in
USER1.EQACUANS.TEST.REPORT(COB01) that are 6 characters long and whose first 5
characters are 'COB01' are to be included in the HTML Targeted Coverage Report.

Command interface example 2:
EQACUTRG
(’USER1.TCO.COBOL’,’USER1.TCN.COBOL’)
’USER1.EQACUANS.TEST.REPORT(COB01)’
(COB01%,COB02*)
’USER1.TARG.HTML(COB01)’

This command indicates that the following Program-IDs in
USER1.EQACUANS.TEST.REPORT(COB01) are to be included in the HTML Targeted
Coverage Report:
v The Program-IDs that are 6 characters long and whose first 5 characters are

'COB01'
v The Program-IDs that are 5 to 8 characters long and whose first 5 characters are

'COB02'

The following table summarizes how the COBOL Porgram-ID specification for the
Program-ID works for Targeted Code Coverage for each interface.

Chapter 14. HTML reports 145

COBOL Program-ID
specification

Action in command
interface Action in panel interface

Blank5 Not supported. The Program-ID selection
panel is displayed. The
Program-ID selection list
contains all Program-IDs in
the annotated listing report.

Asterisk5 Process all Program-IDs in
the annotated listing report.

Process all Program-IDs in
the annotated listing report.7

Single Program-ID pattern
containing no special pattern
characters6

Process the single
Program-ID from the
annotated listing report.

Process the single
Program-ID from the
annotated listing report.7

Single Program-ID pattern
containing special pattern
characters5

Process all the Program-IDs
in the annotated listing
report that match the pattern.

The Program-ID selection
panel is displayed and lists
all Program-IDs in the
annotated listing report that
match the pattern.

Multiple Program-IDs
patterns containing no
special pattern characters5,8

Process all the Program-IDs
in the annotated listing
report that match any of the
patterns.

Process all the Program-IDs
in the annotated listing
report that match any of the
patterns.

Multiple Program-IDs
patterns containing special
pattern characters5,8

Process all the Program-IDs
in the annotated listing
report that match any of the
patterns.

The Program-ID selection
panel is displayed and lists
all Program-IDs in the
annotated listing report that
match any of the patterns.9

Creating an HTML Targeted Coverage Report by using the
panel interface

To create an HTML Targeted Coverage Report by using the panel interface:
1. (Optional) Allocate the data set for the output HTML Targeted Coverage file,

specifying RECFM=VB and LRECL>=255. If you do not allocate the data set, a
data set is allocated for you.

2. Select Option 6 of the Coverage Utility Create Reports panel to get to the
Create HTML Targeted Coverage Report panel, which looks like the following
example:

5. Do not specify member name on old and new source data set names.

6. Specify sequential or partitioned old and new source data sets. If partitioned and a member name is not specified, then the
Program-ID is used as the member name.

7. Processing is initiated without using the Program-ID selection panel regardless of what else is specified in the Program-ID name
pattern list.

8. Must be enclosed in parenthesis in the command interface.

9. If one of the patterns in the list is a single asterisk then processing is initiated without using a selection panel.

146 Debug Tool V13.1 Coverage Utility User's Guide and Messages

------------------ Create HTML Targeted Coverage Report ------------------
Option ===>

Input:
Old COBOL source Dsn. ’USER1.TCO.COBOL’
New COBOL source Dsn. ’USER1.TCN.COBOL’
Annotated Report Dsn. ’USER1.EQACUANS.TEST.REPORT(COB01)’
COBOL Program-ID. . .

(blank/pattern - member list, * - process all)

Output HTML Targeted Coverage File:
Dsn ’USER1.TARG.HTML(COB01)’

Colors:
Executed Yellow
Not Executed Pink
Text Black
Background White
Headers Blue

3. Specify the old COBOL source. This is the COBOL source file before changes
were made.

4. Specify the new COBOL source. This is the COBOL source file after changes
were made and from which the annotated report was generated.

5. Specify the annotated report. This is the annotated report file as described in
Chapter 11, “Annotated listing report,” on page 121.

6. Specify the COBOL Program-ID. This is specified as a Program-ID pattern list.
See “Specifying the COBOL Program-ID” on page 143 for details.

7. Specify the output HTML targeted coverage file.
8. Specify the colors you want to highlight the following items:

Executed
The background color of changed lines that were run.

Not Executed
The background color of changed lines that were not run.

Text
The foreground color of text.

Background
The background color of normal text and headers.

Headers
The foreground color of text for headers.

You can specify any color that is supported by your internet browser.

Creating an HTML Targeted Coverage Report by using the
panel interface, Program-ID selection

You can take the following steps to create an HTML Targeted Coverage Report by
using the panel interface, Program-ID selection:
1. To generate a list of Program-IDs that are selectable and in alphabetic order

when you process the HTML Targeted Coverage Report, specify either a blank '
' or at least 1 Program-ID pattern value. The Program-ID pattern value must
contain a special pattern character in the COBOL Program-ID field in the
panel as shown in “Creating an HTML Targeted Coverage Report by using the
panel interface” on page 146. After the list of Program-IDs is generated, the
selection panel is displayed. Below is a sample selection panel.

Chapter 14. HTML reports 147

Target USER1.EQACUANS.TEST.REPORT(COB01) Row 1 to 4 of 4

S in Select field to select Program-ID, blank to de-select
Commands: S|SEL|SELECT pattern, L|LOC|LOCATE Program-ID, END|EXIT, CANcel

Select Program-ID Date Time
COB01A 02/27/2011 16:57:24
COB01B 02/27/2011 16:57:24
COB01C 02/27/2011 16:57:24
COB01D 02/27/2011 16:57:25

******************************* Bottom of data ********************************

Command ===> Scroll ===> PAGE

2. Overtype the Select field with an 'S' (or 's') to select the Program-IDs from the
annotated listing report to be included in the HTML Targeted Coverage Report.
' ' (blank) can be used in the Select field to de-select a Program-ID.
'S', 'SEL', or 'SELECT' with a pattern value on the command line will
automatically enter an 'S' in the Select field for those Program-IDs that match
the pattern value.
'L', 'LOC', or 'LOCATE' with a pattern value on the command line will search
the list of Program-IDs from the top.
v If the Program-ID is in the list, the Program-ID becomes the first one on this

panel.
v If the specified Program-ID is not found, the first Program-ID alphabetically

succeeding the specified Program-ID becomes the first one on this panel.
v If there is no Program-ID that alphabetically succeeds the specified

Program-ID, the last Program-ID becomes the first one on this panel.
'S', 'SEL', 'SELECT', 'L', 'LOC', and 'LOCATE' are not case-sensitive in the Select
field.

3. Enter the END or EXIT command to initiate the processing of selected
Program-IDs.

Creating an HTML Targeted Coverage Report by using the
command interface

You can use the EQACUTRG command to generate the HTML Targeted Coverage
Report.

The following diagram illustrates the syntax of the EQACUTRG command:

�� EQACUTRG compdsn inputdsn programid outputdsn
(oldsrcdsn , newsrcdsn)

�

�
COLOR (, , , ,)

exec unexec text backgrnd headers

��

The command parameters are described in the following list:

compdsn
DSName of the output data set generated by a SUPERC compare of the old
and new source files. This must be a sequential dataset or a PDS / PDSE with
a member name specified.

148 Debug Tool V13.1 Coverage Utility User's Guide and Messages

oldsrcdsn
DSName of the old source file to be compared.. This must be a sequential
dataset or a PDS / PDSE with a member name specified.

newsrcdsn
DSName of the new source file to be compared.. This must be a sequential
dataset or a PDS / PDSE with a member name specified.

inputdsn
DSName of annotated listing report that is used as input to this command.
This must be a sequential dataset or a PDS / PDSE with a member name
specified.

programid
The COBOL PROGRAM-ID. This is specified as a Program-ID pattern list. See
“Specifying the COBOL Program-ID” on page 143 for details.

outputdsn
DSName of HTML Targeted Coverage Report that is to be generated. If this
data set does not exist, it will be created by this command. The required DCB
attributes are RECFM=VB, LRECL>=255. This must be a sequential dataset or a
PDS / PDSE with a member name specified.

exec
The background color for lines of executed code. You can specify any color
name that is supported by a browser. The default color is pink.

unexec
The background color for lines of unexecuted code. You can specify any color
name that is supported by a browser. The default color is yellow.

text
The foreground color for lines of normal text. You can specify any color name
that is supported by a browser. The default color is black.

backgrnd
The background color for lines of normal text. You can specify any color name
that is supported by a browser. The default color is white.

headers
The foreground color for lines in the summary header that are not hot links.
You can specify any color name that is supported by a browser. The default
color is blue.

Restrictions on creating an HTML Targeted Coverage Report
The following restrictions apply:
v You can use this process on Enterprise COBOL programs only.
v If compdsn is supplied, the SuperC should be done using the options: LINECMP,

NOSUMS, DLREFM, NOPRTCC, DPCBCMT, and DPBLKCL.
v This process does not mark any lines when a "pure" delete is found.
v If a block of code is modified and there is more than one occurrence of these

lines in the source code, all occurrences of these lines are marked and a message
is issued indicating that an ambiguous change was detected.

v This process cannot detect changes in COPY books, and therefore cannot mark
the changes.

v The compdsn parameter cannot be used unless the Program-ID name pattern list
contains only a single Program-ID with no special pattern characters.

Chapter 14. HTML reports 149

v This process cannot highlight the changes to continuation lines of multiple line
statements.

Format of the HTML Targeted Coverage Report
The HTML Targeted Coverage Report is divided into four sections followed by the
selected annotated listings. The first section of the report contains the following
information:
v Title
v Date and time the report was generated
v Test case ID (if specified)

Sections two through four contain information similar to that in a summary report
described in Chapter 10, “Summary report,” on page 109. The following list
describes the differences:
v The statistics displayed in an HTML Targeted Coverage Report are generated

from the annotation symbols on the changed source lines in the annotated
listing. Only statistics for the selected Program-IDs are included. Because the
annotation symbols are used, the following items cannot be detected and might
result in statistics that do not match those in the standard summary report:
– Multiple statements on a source line
– Multiple branches within a single source line or statement

v Each line containing one or more annotation symbols is counted as a statement.
v The Unexecuted Code and Branches That Have Not Gone Both Ways sections contain

links to the corresponding statements in the HTML Targeted Coverage Report.

Following this summary information are the listings of the selected Program-IDs
from the annotated listing report. In these listings, you can view highlighted lines
containing statements that were not executed and changed branches that were not
take both ways. Lines containing changed statements that were not executed and
changed branches that were not taken both ways are highlighted. The listings in
the report are in alphabetical order by Program-ID.

Example Targeted Coverage Report

The following example illustrates the first four sections of an HTML Targeted
Coverage Report:

Debug Tool Coverage Utility Targeted Coverage
HTML Targeted Coverage Report
DATE: 08/19/2002 TIME: 12:29:35

TEST CASE ID:

Coverage Utility Targeted Coverage

Program

Statements Branches

Total Exec % CPath Taken %

COB739 88 68 77.27% 68 42 61.76%

Total: 88 68 77.27% 68 42 61.76%

150 Debug Tool V13.1 Coverage Utility User's Guide and Messages

Unexecuted Code

Program Start-End Start-End Start-End Start-End

COB739 101 125-127 145-147 216

254-258 301 304-306 348

350 353

Branches That Have Not Gone Both Ways

Program Stmt Stmt Stmt Stmt Stmt Stmt Stmt Stmt

COB739 98 122 142 164 166 212 250 252

298 300 302 345 347 349 351

Chapter 14. HTML reports 151

152 Debug Tool V13.1 Coverage Utility User's Guide and Messages

Part 6. Dealing with special situations

Use the information in this part to:
v Incorporate into your standard development procedure the creation of the

listings and modified object modules used by Coverage Utility.
v Solve system abends and space and performance problems.

These techniques help you use Coverage Utility in a complex testing environment,
such as large projects with many programmers and testers.

© Copyright IBM Corp. 1992, 2014 153

154 Debug Tool V13.1 Coverage Utility User's Guide and Messages

Chapter 15. Using Coverage Utility in a project environment

Typically, large projects involve the following factors:
v Many code developers and testers.
v The compilation of continually changing application program modules over an

extended period of time (a process which produces the listings needed by
Coverage Utility).

v A testing interval that can last many days or weeks.

Use this section to learn how to incorporate the creation of files needed by
Coverage Utility and the combining of results into your existing procedures. You
can generate breakpoint data for an object module every time that you compile the
module or for any number of listings at the same time. You can then create a
summary and annotated listing report for selected modules.
v “Creating Coverage Utility files during code development”
v “Combining test case coverage results” on page 157
v “Measuring coverage for individual test cases” on page 160

Creating Coverage Utility files during code development
To enable the monitoring of code covererage for your projects, incorporate into
your standard development procedure the creation of the listings and modified
object modules used by Coverage Utility.

In this section the following terms are used as noted:

Coder A person who develops multiple compilable object modules for a product.

Tester A person who runs test cases on the product to obtain test case coverage
data.

Module
A separately compilable object module of the project that has a listing.

To create Coverage Utility files during code development, the coder and tester
follow these steps.

A flow diagram of test case coverage in a large project environment is shown here:

© Copyright IBM Corp. 1992, 2014 155

For the coder
Each coder generates breakpoint data on object modules when the modules are
ready to be tested.
1. Create the breakpoint data automatically by including a Coverage Utility setup

step (EQACUSET program) in your compile procedure or JCL, which creates a
breakpoint table to match the object module.

2. In the Coverage Utility step, include a EQACUZPT program that uses the
breakpoint data and modifies the object module by inserting the breakpoints.

Adding these Coverage Utility steps keeps the breakpoint data current with your
development.

For the tester
1. Select the object modules to be measured by Coverage Utility (created by the

coder). Link them with the remaining unmodified object modules to create the
executable load module.

2. In the Coverage Utility control cards, enter the names of the modules that are
to be measured by Coverage Utility.

3. Update the start monitor JCL, by concatenating the breakpoint files as DD
statements for use by the monitor during the test case coverage run.

Breakpoint
data

Test case
results

Modified
object

modules

Test
programsMonitor

Create
reports

Job stream
for compile

Setup of
one listing

Link

156 Debug Tool V13.1 Coverage Utility User's Guide and Messages

4. Start a monitor session and run the test cases.
5. Stop the monitor session. When the monitor is stopped, it writes the test case

coverage results for each module to a test case results (BRKOUT) file.
6. Create summary and annotated listing reports for selected modules from the

test case coverage results, by putting the names of the modules into the
Coverage Utility control cards. These names can be any modules that you have
tested in any test coverage run, as long as the results are in a BRKOUT file.

7. Perform steps 1 on page 156 through 6 for as many coders or test case coverage
runs as desired.

For overall test case coverage, the tester combines results from each coder or test
case coverage run into one report.

Combining test case coverage results
To combine individual test case coverage runs into a report that shows overall test
case coverage, run the Coverage Utility test case coverage combine program. This
diagram is an example of combining test case results:

The diagram shows three test case coverage runs that were made, each with a
different set of test cases:
v Tester 1 measured modules A, B, and C.
v Tester 2 measured modules B, C, and D.
v Tester 3 measured modules A, B, and D.

The test case results were put into different BRKOUT files.

results for:
module A
module B
module C

results for:
module B
module C
module D

CA combine
program

combined
results for:
module A
module B
module C
module D

results for:
module A
module B
module D

Tester 1
test case coverage

results
(TEST1.BRKOUT)

Tester 2
test case coverage

results
(TEST2.BRKOUT)

TESTCMB.BRKOUT

Tester 3
test case coverage

results
(TEST3.BRKOUT)

Chapter 15. Using Coverage Utility in a project environment 157

To combine the results from multiple test case coverage runs into one file, run the
Coverage Utility combine program. The combined results show the overall test
case coverage. You can then produce a summary or annotated listing report using
the combined BRKOUT file.

The BRKTAB files used for the reports must include all modules that have
coverage in BRKOUT (modules A through D in the diagram). If the BRKTAB files
for the modules exist in different files, concatenate them on the BRKTAB DD
statement in the report JCL.

Creating the combine JCL by using the panels
To combine test case coverage results using the panels, follow these steps:
1. Select option 4 from the Debug Tool Coverage Utility panel to display the

Create Reports panel.
2. On that panel select option 4 to display the Create JCL for Combining Multiple

Runs panel, shown here:

3. Select option 1 (EditCtl) and change the values entered in each field as
appropriate.
The options and fields on the panel are as follows:

EditCtl
Edit the combined control file.

ResetCtl
Reset the combined control file.

Generate
Generate JCL using the parameters that you have specified on the
panel.

Edit Display an ISPF edit session where you can change existing JCL.

Submit
Submit for execution the JCL that you specify in the JCL Dsn field on
this panel.

Use Program Name for File Name
Enter YES if you want to construct the data set names from the default

-------------------- Create JCL for Combining Multiple Runs ------------------
Option ===>

1 EditCtl Edit Combined Control File
2 ResetCtl Reset Combined Control File
3 Generate Generate JCL from parameters
4 Edit Edit JCL
5 Submit Submit JCL

Enter END to Terminate

Use Program Name for File Name YES (Yes|No) Program Name COB06M

Combined Control File:
Combined Cntl Dsn . . ’YOUNG.SAMPLE.CBCTL(COB06M)’

JCL Library and Member:
JCL Dsn ’YOUNG.SAMPLE.JCL(CCOB06M)’

Combined Breakout File:
Breakout Dsn. ’YOUNG.SAMPLE.COB06M.CMBOUT’

158 Debug Tool V13.1 Coverage Utility User's Guide and Messages

high-level qualifier, the specified program name, and the default
low-level qualifier for each data set. Using the program name is the
normal Coverage Utility procedure.

When you press Enter, the file names on the panel are changed
automatically.

Program Name
The name to use for Coverage Utility data sets when you enter YES in
the Use Program Name for File Name field. This name can be any
valid name; it does not need to be the name of any of your programs.

Names of the following forms are created:
v Sequential data sets:

’proj_qual.program_name.file_type’

For example: 'YOUNG.SAMPLE.COB01.BRKTAB'
v Partitioned data sets:

’proj_qual.file_type(program_name)’

For example: 'YOUNG.SAMPLE.BRKTAB(COB01)'

Combined Cntl Dsn
The name of the data set that contains the list of breakout data sets that
you want to combine.

JCL Dsn
The name of the JCL data set that contains the JCL for this action.

Default: If you set Use Program Name for File Name to YES, then the
member name or program name qualifier of the data set will be
Cxxxxxxx, where xxxxxxx is the last seven characters of the program
name.

Breakout Dsn
The name of the combined BRKOUT data set that is created by running
the combine JCL.

4. The EditCtl option puts you into an ISPF edit session where you list the data
sets to be combined. You must enter the complete data set name for each data
set. This is an example:

EDIT YOUNG.SAMPLE.CBCTL(COB06M) - 01.00 Columns 00001 00072
Command ===> Scroll ===> CSR
****** ***************************** Top of Data ******************************
000001 *
000002 * List the input files (PDS or SEQ) you wish to combine (one per line),
000003 * using JCL naming conventions. All comment lines must start with ’*’.
000004 *
000005 YOUNG.SAMPLE.BRKOUT(COB06M1) <= Input DSN 1
000006 YOUNG.SAMPLE.BRKOUT(COB06M3) <= Input DSN 2
000007 YOUNG.SAMPLE.BRKOUT(COB06M5) <= Input DSN 3
000008 YOUNG.SAMPLE.BRKOUT(COB06M7) <= Input DSN 4
000009 <= Input DSN 5
000010 <= Input DSN 6
000011 <= Input DSN 7
000012 <= Input DSN 8
000013 <= Input DSN 9
000014 <= Input DSN 10
****** **************************** Bottom of Data ****************************

Chapter 15. Using Coverage Utility in a project environment 159

Rules for combining results
The results of two coverage runs can be combined only if there were no changes to
the program between the coverage runs. The combine program checks to ensure
that each program area contains the same number of breakpoints (statements) in
the BRKTAB file. The coverage runs from the following steps are combined:
1. Run setup, which creates BRKTAB file.
2. Run coverage run 1, which uses BRKTAB file.
3. Run coverage run 2, which uses same BRKTAB file.

If you rerun setup without changing the program (it contains the same number of
statements), the combine program combines the results.

The following coverage runs from these steps cannot be combined, because the
program has changed (it contains a different number of statements).
1. Run setup, which creates BRKTAB1 file.
2. Run coverage run 1, which uses BRKTAB1 file.
3. Modify the program.
4. Rerun setup, which creates a new BRKTAB2 file.
5. Run coverage run 2, which uses BRKTAB2 file.

Measuring coverage for individual test cases
As a tester, you might want to keep coverage results on a test case basis. You can
then run test cases for regression test fixes that affect only a few modules instead
of running all of the test cases.

Test case coverage results are saved in a BRKOUT file if the monitor is running
and you issue either the EQACUOSN or EQACUOSP command. When you run
these commands, you can select the data set name of the BRKOUT file.

For example, if you wanted to measure coverage for each of three test cases, you
could do the following procedure:
1. Start the monitor by issuing XTEST2.
2. Run TEST2 for test case 1 by issuing TEST2 parm1
3. Save the coverage results in a file called prefix.TC1.BRKOUT4 by issuing

EQACUOSN TC1.
4. Reset the statistics by issuing EQACUORE.
5. Run TEST2 for test case 2 by issuing TEST2 parm2.
6. Save the coverage results in a file called prefix.TC2.BRKOUT4 by issuring

EQACUOSN TC2.
7. Reset the statistics by issuing EQACUORE.
8. Run TEST2 for test case 3 by issuing TEST2 parm3.
9. Save the coverage results in a file called prefix.TC3.BRKOUT4 and stop the

monitor session by issuing EQACUOSP TC3.

The BRKOUT files (TC1, TC2, and TC3 in the example) contain coverage results for
their respective test cases. You can run the Coverage Utility report program on the
individual BRKOUT files to obtain coverage results for the specific test cases. To
obtain overall coverage, run the combine program on all of the BRKOUT files
(TC1, TC2, and TC3 in the example).

160 Debug Tool V13.1 Coverage Utility User's Guide and Messages

Chapter 16. Diagnosing monitor problems

This section describes how you can solve the following problems:
v “Solving system 047 abend” when you try to start a monitor session
v “Solving system 7C1 abend in a user program” in a user program during a test

case run
v “Solving protection exception 0C4 (reason code 4) in a user program” on page

162 in a user program during a test case run
v “Solving system 0F8 abend in a user program” on page 162 in a user program

during a test case run
v “Solving system Fnn abend in a user program” on page 162 in a user program

during a test case run
v “Solving lack of ECSA space” on page 163
v “Solving poor performance when measuring conditional branch coverage” on

page 163 when measuring conditional-branch coverage

Solving system 047 abend
If this abend occurs when you submit the start monitor JCL or when you use the
monitor interface commands, the command handler program was not in an
authorized data set. Identify the Coverage Utility program that must meet this
requirement, and have the data set authorized.

Related references
Debug Tool Customization Guide

Solving system 7C1 abend in a user program
If you run an instrumented user program and have not started a session to handle
it, or if you start the session with a BRKTAB file that does not match the
executable program, the monitor cannot identify the user supervisor call (SVC) that
is installed as the breakpoint. When this problem occurs, the program terminates
with a system abend 7C1, reason code 1.

The monitor might not recognize the user SVC as a breakpoint when one of these
situations occurs:
v The listing that you used during setup does not match the code in the module

being tested.
v You changed the program but did not rerun the setup step.
v You did not relink your program with the modified object modules after you ran

the setup step.
v A monitor session that matches the code in the module being tested is not

running.
v You have not stopped and restarted the monitor session after the setup step has

completed.

Correct all the situations that apply.

Other reason codes that you might receive for the 7C1 abend are:

© Copyright IBM Corp. 1992, 2014 161

2 Coverage Utility control block error. Reinstall the Coverage Utility monitor
SVCs.

3 Coverage Utility control block error. Reinstall the Coverage Utility monitor
SVCs.

4 Cannot get dynamic storage for the user. Rerun the program that is being
tested. If this error persists, reinstall the Coverage Utility monitor SVCs.

5 Cannot get dynamic storage for the user. Rerun the program that is being
tested. If this error persists, reinstall the Coverage Utility monitor SVCs.

6 Cannot get a lock to update the coverage data. Rerun the program that is
being tested. If the error persists, stop all monitor sessions, and then start
them again.

Related references
Debug Tool Customization Guide

Solving protection exception 0C4 (reason code 4) in a user program
When a breakpoint in an instrumented program is hit, it is replaced with the real
instruction and the program continues. In order for the replacement to succeed, the
user program must not be in read-only storage. If an update is attempted to
read-only storage, the user program terminates with an 0C4 system abend. Under
CICS, this abend will be 0C4/AKEA, which is reflected to you as an ASRA
transaction abend.

Place the program in a non-authorized library for testing. For CICS programs, test
in a CICS region without reentrant program protection (use
RENTPGM=NOPROTECT).

Related references
“Restrictions on programs that reside in read-only storage” on page 80

Solving system 0F8 abend in a user program
A type 3 user SVC is used for a breakpoint. There are some system modes that
cannot be in effect when this type of SVC is issued. Typically these modes are used
in assembler code only. If a breakpoint is hit when one of these system modes is in
effect, an 0F8 system abend occurs.

For details on which system modes can lead to this abend, see the reason code list
for an 0F8 system abend code.

Exception: Reason code 18, AR mode is not a restriction with the Coverage Utility
breakpoint SVCs.

Related references
z/OS MVS System Codes
OS/390 MVS System Codes

Solving system Fnn abend in a user program
If the monitor is not installed and an instrumented program is run, the user
program terminates with a system abend code of Fnn, where nn is the SVC
number used as the breakpoint.

Install the monitor before attempting to run instrumented programs.

162 Debug Tool V13.1 Coverage Utility User's Guide and Messages

|

Solving lack of ECSA space
The monitor allocates ECSA storage for each session. If you encounter ECSA
storage limitations, contact your systems programmer to see whether ECSA storage
can be increased.

Because of ECSA storage fragmentation, there might be enough free storage
available, but not in a segment of sufficient size to load the tables. When a request
for ECSA storage is made to the operating system, it fails if there is no free
segment large enough to honor the request.

Related references
“Monitor CSA, ESQA, and ECSA usage” on page 189

Solving poor performance when measuring conditional branch
coverage

Measuring coverage when a conditional instruction branches takes more overhead
than unconditional instructions (the breakpoint at the conditional branch must be
left in storage). If the increased overhead is unacceptable for your testing, you can
turn off conditional branch coverage.

Related tasks
“Using performance mode to reduce monitor overhead” on page 78

Chapter 16. Diagnosing monitor problems 163

164 Debug Tool V13.1 Coverage Utility User's Guide and Messages

Part 7. Appendixes

© Copyright IBM Corp. 1992, 2014 165

166 Debug Tool V13.1 Coverage Utility User's Guide and Messages

Appendix A. Messages

This appendix describes error messages that you might receive during Coverage
Utility installation and operation.

Messages that are noted as not being translated are messages that are issued
during the monitor SVC installation or by the monitor SVCs. These messages
always appear in English regardless of the NATLANG specification.

EQACU001S Combine: Error opening input file: dsn.

Explanation: Combine could not open the specified
data set.

System action: Combine terminates.

User response: Ensure that the data set exists and is
available.

EQACU002S Combine: Error opening output file: dsn.

Explanation: Combine could not open the specified
data set.

System action: Combine terminates.

User response: Ensure that the data set is allocated
and can be accessed.

EQACU003S Combine: Insufficient storage to satisfy
request.

Explanation: The Coverage Utility combine program
got an error code from the operating system command
used to request storage for the BRKOUT table. Thirty
two bytes are needed for each breakpoint (plus 64 bytes
per PA and 32 bytes per logical file number).

System action: Combine terminates.

User response: Increase the region size on your job
card for the step. Coverage Utility obtains job card
information from the user defaults.

EQACU004S Combine: Input file 1 is not a BRKOUT
or BRKTAB file.

Explanation: Input file 1 is not a BRKOUT or BRKTAB
file.

System action: Combine terminates.

User response: Provide a valid BRKOUT or BRKTAB
file for input file 1.

EQACU005S Combine: Input file 2 is not a BRKOUT
or BRKTAB file.

Explanation: Input file 2 is not a BRKOUT or BRKTAB
file.

System action: Combine terminates.

User response: Provide valid BRKOUT or BRKTAB
file as input file 2.

EQACU006S Combine: Input files do not match. One
is a BRKTAB and one is a BRKOUT.

Explanation: The input files are of a matching type
(either both BRKTAB or both BRKOUT).

System action: Combine terminates.

User response: Provide input files of matching type
(BRKOUT or BRKTAB).

EQACU007S Combine: Invalid keyword or value
keyword

Explanation: An invalid keyword or keyword operand
was detected.

System action: Combine terminates.

User response: Correct the specified keyword or
operand.

EQACU008S Combine: Unsupported value specified
in parameter parm

Explanation: An invalid value was specified for the
indicated parameter.

System action: Combine terminates.

User response: Correct the specified value.

EQACU009W Combine: Both input files are empty.
Empty output file is created.

Explanation: Both input files to combine (INPUT1 and
INPUT2) are empty.

System action: Combine generates an empty output
data set.

User response: Provide valid BRKTAB or BRKOUT
files.

EQACU010W Combine: Input file inputx is empty.
Other input file is copied to output file.

© Copyright IBM Corp. 1992, 2014 167

Explanation: The specified combine input file is
empty. The other input file appears to contain a valid
BRKTAB or BRKOUT file.

System action: The valid input file is copied to the
output data set.

User response: Provide valid BRKTAB or BRKOUT
files.

EQACU011S Summary: Invalid keyword or value
keyword.

Explanation: The parameter passed to summary is not
valid.

System action: Summary terminates.

User response: Correct keyword or value.
Related references
“Summary program parameters” on page 135

EQACU012S Summary: EOF of BRKTAB before
finding the testid test case.

Explanation: The testid test case was not found in the
BRKTAB file provided.

System action: Summary terminates.

User response: Ensure that the BRKTAB file in the
BRKTAB DD statement of the JCL is the same one that
was used when you ran the monitor session that
created the BRKOUT file in the BRKOUT DD
statement. If you have run setup to create a new
BRKTAB file since creating the BRKOUT file, the
BRKOUT and the BRKTAB files will not match.

EQACU013S Summary: Invalid file name file_name
cannot be opened.

Explanation: The file file_name cannot be opened.

System action: Summary terminates.

User response: Ensure that the DDNAME file_name is
specified in the JCL, that the file it points to exists and
is available to the summary job, and that the job that
created the file completed successfully.

EQACU014S Summary: Invalid BRKTAB file.

Explanation: The BRKTAB file is not valid.

System action: Summary terminates.

User response: Ensure that you are passing the correct
BRKTAB file in the BRKTAB DD statement of the JCL.

EQACU015S Summary: Invalid BRKOUT file.

Explanation: The BRKOUT file is not valid.

System action: Summary terminates.

User response: Ensure that you are passing the correct

BRKOUT file in the BRKOUT DD statement of the JCL.

EQACU016S Summary: No space for BRKTAB file.

Explanation: The Coverage Utility summary program
received an error code from the operating system
command that was used to request storage for the
BRKTAB file.

System action: Summary terminates.

User response: Increase the region size on your job
card for this step. Coverage Utility obtains job card
information from the user defaults.

EQACU017S Summary: No space for BP table or Bit
map.

Explanation: The Coverage Utility summary program
received an error code from the operating system
command that was used to request storage for the BP
table or Bit map.

System action: Summary terminates.

User response: Increase the region size on your job
card for this step. Coverage Utility obtains job card
information from the user defaults.

EQACU018S Summary: Invalid keyword or value
keyword.

Explanation: One or more of the parameters that were
passed to report are not valid.

System action: Report terminates.

User response: Correct the keyword or value.
Related references
“Parameters for the summary and report programs”
on page 135

EQACU019S Report: Invalid file name file_name
cannot be opened

Explanation: The file file_name cannot be opened.

System action: Report terminates.

User response: Ensure that the DDNAME file-name is
specified in the JCL, that the file it points to exists and
is available to the report job, and that the job that
created the file completed successfully.

EQACU020S Report: Illegal listing input file
listing_name

Explanation: Report detected something wrong with
the assembler listing. Report expects a standard
Assembler H or High Level Assembler listing format.

System action: Report terminates.

User response: Check that you are using a standard
Assembler H or High Level Assembler listing. This

EQACU011S • EQACU020S

168 Debug Tool V13.1 Coverage Utility User's Guide and Messages

error can also be caused by having more than one
compile unit in a BRKTAB or BRKOUT file that
contains the same external CSECT name, which is not
supported.

EQACU021S Report: No procedures or entry name
found in listing.

Explanation: The Coverage Utility report program did
not find an entry name in the listing being processed.

For Enterprise COBOL for z/OS Version 5, report
expects to find an PROC entname instruction in the
assembler listing section of the listing, where entname is
the name that was used during setup to identify this
PA.

For Enterprise COBOL for z/OS V4, Enterprise COBOL
for z/OS and OS/390, COBOL for MVS & VM and VS
COBOL II, report expects to find an entname DS 0H
instruction in the assembler listing section of the listing,
where entname is the name that was used during setup
to identify this PA.

For OS/VS COBOL, the name of the first
PROGRAM-ID is used (extracted from the title line).

For PL/I, report expects to find Procedure entname in
the assembler listing section of the listing.

System action: Report terminates.

User response: Verify that you are using the BRKOUT
file of test case coverage results with the listings that go
with it.

EQACU022S Report: Invalid BRKTAB file.

Explanation: The input BRKTAB file does not contain
valid BRKTAB data.

System action: Report terminates.

User response: Ensure that setup has completed
creating the BRKTAB file successfully. If it has, contact
Coverage Utility support. If is has not, correct any
errors that setup issued, and then rerun the job.

EQACU023S Report: Invalid BRKOUT file.

Explanation: The input BRKOUT file does not contain
valid BRKOUT data.

System action: Report terminates.

User response: Verify that EQACUOSP or
EQACUOSN has been issued in order to create the
BRKOUT file. If it has, contact Debug Tool support.

EQACU024S Report: Entry name: ename not found in
BRKTAB file.

Explanation: The entry name of the listing that was
being processed was not found in the BRKTAB table.
For COBOL, the entry name is from the PROGRAM-ID

paragraph. For PL/I, the entry name is the name of the
external procedure.

System action: Report terminates.

User response: Verify that the listing that you are
processing is one that has coverage data in the
BRKTAB file that is being used. You should be able to
find the first CSECT name of your listing in the
BRKOUT file.

EQACU025S Report: Entry name: ename not found in
BRKOUT file.

Explanation: The entry name of the listing being
processed was not found in the BRKOUT table. For
COBOL, the entry name is from the PROGRAM-ID
paragraph. For PL/I, the entry name is the name of the
external procedure.

System action: Report terminates.

User response: Verify that the listing you are
processing is one that has coverage data in the
BRKOUT file being used. You should be able to find
the first CSECT name of your listing in the BRKOUT
file.

EQACU026S Report: No space for BRKTAB table.

Explanation: The Coverage Utility report program
received an error code from the operating system
command that was used to request storage for the
BRKOUT table.

System action: Report terminates.

User response: Increase the region size on your job
card for the report step. Coverage Utility obtains job
card information from the user defaults.

EQACU027S Report: No space for Bit map.

Explanation: The Coverage Utility report program
received an error code from the operating system
command used to request storage for the bit map.

System action: Report terminates.

User response: Increase the region size on your job
card for this step. Coverage Utility obtains job card
information from the user defaults.

EQACU028E Report: Miscompares of opcode in
storage during execution. listing_name

Explanation: An opcode in the listing did not match
that in the BRKTAB. The BRKTAB and listing might be
out of synch.

System action: The opcode is discarded and
processing continues.

User response: Ensure that the listing that is being

EQACU021S • EQACU028E

Appendix A. Messages 169

annotated is the same one that is used to generate the
BRKTAB.

EQACU029E Report: Listing name dsn not found in
BRKTAB file.

Explanation: The specified listing data set name was
not found in the BRKTAB file.

System action: Processing terminates.

User response: Correct the dsn specification.

EQACU030S Report: Listing name dsn not found in
BRKOUT file.

Explanation: The specified listing data set name was
not found in the BRKOUT file.

System action: Processing terminates.

User response: Correct the dsn specification.

EQACU031S Report: Unsupported value specified in
parameter keyword.

Explanation: The operand of the specified keyword
contained a value that is not valid.

System action: Processing terminates.

User response: Correct the operand of the specified
keyword.

EQACU032S Summary: Unsupported value specified
in parameter keyword.

Explanation: The operand of the specified keyword
contained a value that is not valid.

System action: Processing terminates.

User response: Correct the operand of the specified
keyword.

EQACU033S Export XML: Invalid keyword or value
keyword.

Explanation: The parameter that was passed to export
XML data is not valid.

System action: Export terminates.

User response: Correct the parameter.
Related references
“Parameters for the export data program” on page
136

EQACU034S Export XML: EOF of BRKTAB before
finding the testid test case.

Explanation: The testid test case was not found in the
BRKTAB file provided.

System action: Export terminates.

User response: Verify that the BRKTAB file in the
BRKTAB DD statement of the JCL is the same one that
was used when you ran the monitor session that
created the BRKOUT file in the BRKOUT DD
statement. If you have run setup to create a new
BRKTAB file since creating the BRKOUT file, the
BRKOUT and the BRKTAB files will not match.

EQACU035S Export XML: Invalid file name file_name
cannot be opened.

Explanation: The file file_name cannot be opened.

System action: Export terminates.

User response: Verify that the DDNAME file-name is
specified in the JCL, that the file it points to exists and
is available to the export job, and that the job that
created the file completed successfully.

EQACU036S Export XML: Invalid BRKTAB file.

Explanation: The BRKTAB file is not valid.

System action: Export terminates.

User response: Verify that you are passing the correct
BRKTAB file in the BRKTAB DD statement of the JCL.

EQACU037S Export XML: Invalid BRKOUT file.

Explanation: The BRKOUT file is not valid.

System action: Export terminates.

User response: Verify that you are passing the correct
BRKOUT file in the BRKOUT DD statement of the JCL.

EQACU038S Export XML: No space for BRKTAB file.

Explanation: The export XML data program received
an error code from the operating system command that
was used to request storage for the BRKTAB file.

System action: Export terminates.

User response: Increase the region size on your job
card for this step. Coverage Utility obtains job card
information from the user defaults.

EQACU039S Export XML: No space for BP table or
Bit map.

Explanation: The export XML data program received
an error code from the operating system command that
was used to request storage for the BP table or bit map.

System action: Export terminates.

User response: Increase the region size on your job
card for this step. Coverage Utility obtains job card
information from the user defaults.

EQACU029E • EQACU039S

170 Debug Tool V13.1 Coverage Utility User's Guide and Messages

EQACU040S Export XML: Unsupported value
specified in parameter keyword.

Explanation: The operand of the specified keyword
contained a value that is not valid.

System action: Processing terminates.

User response: Correct the operand of the specified
keyword.

EQACU041S Export XML: No space for Execute tag
processing.

Explanation: The export XML data program received
an error code from the operating system command
used to request storage for Execute tag processing.

System action: Export terminates.

User response: Increase the region size on your job
card for this step. Coverage Utility obtains job card
information from the user defaults.

EQACU042S Setup: Load and Object data sets can
not both be specified within a set of
control cards.

Explanation: The object library control cards
FROMOBJDSN and TOOBJDSN are mutually exclusive
with the load library control cards FROMLOADDSN
and TOLOADDSN within a given control data set.

System action: Setup terminates.

User response: Ensure that only object library control
cards or only load library control cards are used within
a single control data set.

EQACU043S Setup: Illegal listing type in Coverage
Utility control file

Explanation: The listing type value (first field) on a
Coverage Utility control card was not a valid list_type.

System action: Setup terminates.

User response: Correct the value. Rerun setup.
Related references
“EQACUSET” on page 67

EQACU044S Setup: No BRKTAB written. Too few
bpoints.

Explanation: No BRKTAB was written, because setup
could not find assembler instructions at which to insert
breakpoints.

System action: Setup terminates.

User response: Check the input listing that was
passed to setup and verify that it is correct, including
the assembler statements.

EQACU045S Setup: Illegal assembler listing

Explanation: The assembler listing is not valid.

System action: Setup terminates.

User response: Ensure that the assembler listing that
was passed to setup is a valid Assembler H or High
Level Assembler listing.

EQACU046S Setup: Undefined error: errnum

Explanation: An unexpected error occurred.

System action: Setup terminates.

User response: Contact Debug Tool support with the
value of errnum.

EQACU047S Setup: Cannot find CSECT: csect_name

Explanation: Setup was unable to find the specified
CSECT, csect_name, in the listing.

System action: Setup terminates.

User response: Ensure that the CSECT name is spelled
correctly and is associated with the correct listing in the
control file.

EQACU048S Setup: Wrong load module.

Explanation: The specified CSECT name was not
found in the load module.

System action: Setup terminates.

User response: Ensure that the correct CSECT and
load module names were specified in the control file.

EQACU049S Setup: TXT record not found to match
this BRKTAB record. OFFSET (oooo)
OPCODE (cccc)

Explanation: During the scan of an object module, a
TXT record was found not to match the breakpoint
code (cccc) at offset (oooo) in the BRKTAB data set. The
BRKTAB data set contains all of the breakpoints as
identified from the source listings. Setup reads the
BRKTAB data set and looks through the object for each
breakpoint. If a breakpoint cannot be found, the
program terminates.

System action: Program terminates.

User response: Verify that the object module that was
passed as input to the program was created by the
same source listing as the BRKTAB file. Rerun setup.

EQACU050S Setup: Breakpoint record not found.
Errors possible. Check the RPTMSGS
data set for additional information.

Explanation: No match was found in the object
module for this breakpoint in BRKTAB.

EQACU040S • EQACU050S

Appendix A. Messages 171

System action: Program continues.

User response: Verify that the object module that was
passed as input to the program was created by the
same source listing as the BRKTAB file. Rerun setup.

EQACU051S Setup: BRKTAB header not found!
Cannot continue. BRKTAB header is not
record # nnnnn.

Explanation: A BRKTAB header number could not be
found. The number that was passed is outside the
range of possibilities for this BRKTAB.

System action: Program terminates.

User response: Correct the errors that were found in
the setup run, and then rerun setup.

EQACU052S Setup: Storage could not be allocated.
Program ending. Insufficient storage.

Explanation: Setup could not acquire enough storage
in order to process the object module.

System action: Program terminates.

Problem Determination: Not enough storage was
available to the job.

User response: Specify a larger REGION size for the
setup job.

EQACU053S Setup: Cannot open BRKTAB file
created during Setup.

Explanation: The BRKTAB file of breakpoint data
created in a previous step cannot be opened.

System action: Program terminates.

User response: The BRKTAB file is created in a
previous step. You should not see this error unless you
modified the JCL for inclusion into your build process.
Check the modified setup JCL.

EQACU054S Setup: Cannot open output file for
VER/REP records.

Explanation: The output file that contains update
records for the EQACUZPP program that instruments
load modules cannot be opened.

System action: Program terminates.

User response: This file is created as a temporary data
set in the JCL. You should not see this error unless you
modified the JCL for inclusion into your build process.
Check the modified setup JCL.

EQACU055S Setup: Illegal BRKTAB file.

Explanation: The BRKTAB file of breakpoint data that
was created in a previous step is not a correct BRKTAB.

System action: Program terminates.

User response: The BRKTAB file is created in a
previous step. You should not see this error unless you
modified the JCL for inclusion into your build process.
Check the modified setup JCL.

EQACU056S Setup: Unsupported value specified in
parameter keyword.

Explanation: The value specified as the operand of the
indicated keyword is not valid.

System action: Program terminates.

User response: Correct the indicated operand.

EQACU057S Setup: Invalid keyword or value
keyword.

Explanation: The indicated keyword or keyword
operand is invalid.

System action: Program terminates.

User response: Correct the indicated keyword or
operand.

EQACU058W Setup: Listing has no executable
statements: no breakpoints inserted

Explanation: A listing that was submitted to setup has
no executable statements.

System action: Setup program continues. A BRKTAB
with no breakpoints is produced.

User response: You can continue with execution and
reports, if this BRKTAB is used with other BRKTABs
that do contain breakpoints. This module will not be
included in the summary report.

EQACU059E Setup: Input statement out of order at
statement linenum

Explanation: The input (SYSIN) statement listed
immediately before this message (which was found at
line linenum in the SYSIN file) was not in the expected
order. Statements are expected to be in the following
order:
v NAME
v BASE (optional)
v VERIFY
v REP (for the same address specified in the preceding

VERIFY)
v more VERIFY / REP pairs or another NAME

System action: Execution is aborted. Breakpoints are
not applied to the load module that is being processed

EQACU051S • EQACU059E

172 Debug Tool V13.1 Coverage Utility User's Guide and Messages

or to any subsequent load modules that are to be
processed.

User response: Correct the order of input statements,
and then rerun the job.

EQACU060E Setup: Invalid hexadecimal number in
input statement linenum

Explanation: The input (SYSIN) statement that is
listed immediately before this message (which was
found at line linenum in the SYSIN file) contained a
hexadecimal number that had either of these errors::
v Contained an invalid hexadecimal digit (not 0-9 and

A-F) or
v Did not consist of either 2, 4, 6, or 8 digits

System action: Execution is aborted. Breakpoints are
not applied to the load module that is being processed
or to any subsequent load modules that is to be
processed.

User response: Correct the input statement, and then
rerun the job.

EQACU061E Setup: Unexpected input statement at
statement linenum

Explanation: The input (SYSIN) statement that is
listed immediately before this message (which was
found at line linenum in the SYSIN file) was not a
comment or a NAME, BASE, VERIFY, or REP
statement.

System action: Execution is aborted. Breakpoints are
not applied to the load module that is being processed
or any subsequent load modules that are to be
processed.

User response: Correct the input statement, and then
rerun the job.

EQACU062E Setup: Operand too long in statement
linenum

Explanation: The input (SYSIN) statement that is
listed immediately before this message (which was
found at line linenum in the SYSIN file) contained an
operand that was longer than expected. The maximum
length expected for each operand is:

NAME - load module name
8 characters

NAME - External / CSECT name
1024 characters

BASE 8 characters

VERIFY / REP - offset
8 characters

VERIFY / REP - old / new data
8 characters

System action: Execution is aborted. Breakpoints are

not applied to the load module that is being processed
or to any subsequent load modules that are to be
processed.

User response: Correct the input statement, and then
rerun the job.

EQACU063W Setup: Breakpoints already applied.

Explanation: All VERIFY statements failed. However,
the current data exactly matched the specified new data
in all cases (that is, all breakpoints were already in
place).

System action: Execution is terminated. However, the
load module that was being processed was copied to
the output (LIBOUT) file.

User response: Correct the VERIFY statements, and
then rerun the job.

EQACU064W Setup: Some breakpoints already
applied.

Explanation: Some VERIFY statements failed.
However, the current data exactly matched the
specified new data in all cases where the VERIFY failed
(that is, some breakpoints were already in place).

System action: Execution is terminated. However, the
load module being processed was copied to the output
(LIBOUT) file with all desired breakpoints created.

User response: Correct the VERIFY statements, and
then rerun the job.

EQACU065E Setup: Load module not found on
LIBIN.

Explanation: The load module that is being processed
was not present in the data set that was specified by
the LIBIN DD statement.

System action: Execution is terminated.

User response: Correct the LIBIN specification, and
then rerun the job.

EQACU066E Setup: Error returned from Binder API
invoked by EQACUBDZ to apply
breakpoints.

Explanation: When the Binder API (IEWBIND) was
invoked to apply breakpoints to the specified load
module, IEWBIND returned a non-zero return code.
This message is followed by message EQACU068E
which lists the return and reason codes returned by
IEWBIND.

System action: Execution is terminated.

User response: Correct the cause of the error, and then
rerun the job.

Related references
DFSMS Program Management

EQACU060E • EQACU066E

Appendix A. Messages 173

EQACU067E Setup: Error returned from Binder API
invoked by EQACUBDM to map
external symbols.

Explanation: When the Binder API (IEWBIND) was
invoked to read the external symbols in the specified
load module, IEWBIND returned a non-zero return
code. This message is followed by message
EQACU068E, which lists the return and reason codes
returned by IEWBIND.

System action: Execution is terminated.

User response: Correct the cause of the error, and then
rerun the job.

Related references
DFSMS Program Management

EQACU068E Setup: Return/Reason codes:
returncode/reasoncodeX

Explanation: The specified return and reason codes
were encountered. Refer to the previous message to
determine how to interpret these codes.

System action: Refer to message EQACU067E.

User response: Refer to the previous message.

EQACU069E Setup: Unable to load IEWBIND.

Explanation: IEWBIND (the Binder API interface)
could not be loaded from the system linklist or the
current JOBLIB or STEPLIB.

System action: Execution is terminated.

User response: Ensure that IEWBIND is available in
the system linklist or the current JOBLIB or STEPLIB,
and rerun the job.

EQACU070E Setup: External (CSECT) name not
found.

Explanation: The current external (CSECT) name was
not present in the load module that was read from the
LIBIN file.

System action: Execution is terminated.

User response: Correct the LIBIN DD specification or
the NAME control statement, and then rerun the job.

EQACU071E Setup: Verify failure. Address 'offset'X
contains 'olddata'X instead of
'expecteddata'X.

Explanation: The specified offset contains olddata
instead of the data that was specified on the VERIFY
statement.

System action: Execution is terminated.

User response: Correct the VERIFY statement, and
then rerun the job.

EQACU072E Setup: Return code from EQACUBDZ:
returncode.

Explanation: The specified return code was returned
from EQACUBDZ.

System action: Execution is terminated.

User response: Contact Debug Tool support.

EQACU073E Setup: Cannot open SYSIN, SYSPRINT,
or LIBIN.

Explanation: The SYSIN, SYSPRINT or LIBIN file
could not be opened. This message is issued using a
Write To Operator.

System action: Execution is terminated.

User response: Correct SYSIN, SYSPRINT, or LIBIN
DD specification, and then rerun the job.

Translation: This message is not translated.

EQACU074E Setup: Operand missing from input
statement.

Explanation: A required operand was not found on
the input statement that immediately preceds this
message. The NAME, VERIFY, and REP statements
require two operands. The BASE statement requires one
operand.

System action: Execution is terminated.

User response: Correct the indicated statement, and
rerun the job.

EQACU075W Setup: C/C++ compiler was executed
with inline optimization in effect -
Performance Mode will be turned on.

Explanation: Coverage Utility cannot accurately
measure conditional branch coverage when inlining is
used in C/C++ code. Setup has been run with the
performance mode option set to Y.

System action: Setup uses Y for the performance mode
option and processes the C/C++ module for statement
coverage only.

User response: You can continue with the steps to
measure coverage. Your statement coverage for C/C++
that contains inlined functions will be correct. If you
want conditional branch coverage, you must compile
without inlining.

Related concepts
“The effects of inlining” on page 132

EQACU076W Setup: Listing has too few executable
statements: no breakpoints inserted

Explanation: A listing submitted to setup created only
one or two breakpoints. This is too few to allow for
accurate identification of breakpoints during execution.

EQACU067E • EQACU076W

174 Debug Tool V13.1 Coverage Utility User's Guide and Messages

System action: Setup program continues. A BRKTAB
with no breakpoints is produced.

User response: You can continue with execution and
reports if this BRKTAB is used with other BRKTABs
that do contain breakpoints. This module will not be
included in the summary report.

EQACU077I Setup: The assembler Program Area
csect_name containing OFFSET (oooo)
OPCODE (cccc) has too few executable
statements. No breakpoints have been
inserted for this PA.

Explanation: An assembler listing that was submitted
to setup contains a CSECT (or partial CSECT if there
are multiple interleaved CSECTs) that contains code
that caused only one or two breakpoints to be created
by setup. This is too few to allow for accurate
identification of breakpoints during execution.

System action: Setup program continues. The
indicated program area and breakpoints are ignored
during setup.

User response: None. This message is issued only to
indicate that the statements in this CSECT will not have
breakpoints placed in them. They will always be
marked as 'not executed' in the annotated listing.

EQACU078S Can not find monitor program
(EQACUOSV) in authorized library.

Explanation: The system could not find the monitor
program (EQACUOSV).

System action: The monitor installer terminates.

User response: Verify that the monitor program is
installed in an authorized library in the load module
search path for the installation job.

Translation: This message is not translated.

EQACU079S Cannot allocate space in ECSA for
monitor.

Explanation: The install program cannot allocate
ECSA storage for the monitor. Insufficient ECSA storage
was available to install the monitor program.

System action: The monitor installer terminates.

User response: Verify with your system programmer
that the amount of ECSA storage needed by the
monitor is available.

Related references
Appendix B, “Resources and requirements,” on page
189

Translation: This message is not translated.

EQACU080S Error loading monitor in ECSA storage.

Explanation: Loading of the monitor into ECSA
(extended common service area) failed.

System action: The monitor installer terminates.

User response: Verify that the monitor program is
installed in an authorized library in the load module
search path for the installation job.

Translation: This message is not translated.

EQACU081S Error updating SVC table with new
SVC numbers.

Explanation: Updating of the SVC table with the new
user SVC numbers failed.

System action: The monitor installer terminates.

User response: Verify that the user SVC numbers
passed to the monitor install program (EQACUOIN)
are available.

Translation: This message is not translated.

EQACU082S Error removing prior SVC token.

Explanation: An operating system error occurred
while trying to remove an SVC token.

System action: The function terminates.

User response: This is an operating system error
issued when trying to remove an SVC token. Retry. If
the problem persists, contact system support or Debug
Tool support.

Translation: This message is not translated.

EQACU083S Error setting SVC token.

Explanation: An operating system error occurred
while trying to obtain an SVC token.

System action: The function terminates.

User response: This is an operating system error when
trying to obtain an SVC token. Retry. If the problem
persists, contact system support or Debug Tool support.

Translation: This message is not translated.

EQACU084S Invalid short SVC number.

Explanation: The SVC number that was supplied for
short opcodes (the first number passed to EQACUOIN)
is not permitted. It must be a hexadecimal number
between C8 and FF.

System action: The monitor installer terminates.

User response: Ensure that the first parameter that is
passed to the EQACUOIN program in the monitor
install JCL is a hexadecimal number between C8 and
FF without any surrounding quotation marks.

EQACU077I • EQACU084S

Appendix A. Messages 175

Translation: This message is not translated.

EQACU085S Invalid long SVC number.

Explanation: The SVC number that was supplied for
long opcodes (the second number passed to
EQACUOIN) is not permitted. It must be a
hexadecimal number between C8 and FF.

System action: The monitor installer terminates.

User response: Ensure that the second parameter that
is passed to the EQACUOIN program in the monitor
install JCL is a hexadecimal number between C8 and
FF without any surrounding quotation marks.

Translation: This message is not translated.

EQACU086S Invalid command

Explanation: A command that is not valid was issued.

System action: The command was ignored.

User response: Because the commands are generated
by REXX programs or created JCL, check that the REXX
or JCL that issued the command has not been
corrupted.

EQACU087S Error reading BRKTAB file

Explanation: You tried to start a session, but there was
an error reading the BRKTAB file of breakpoint data.

System action: The command was not run.

User response: Verify that the BRKTAB file (ddname
BRKTAB in the start monitor JCL Xnnnnnn) is
accessible and is a valid BRKTAB file (starts with
characters BT8).

EQACU088S Invalid BRKTAB file

Explanation: You tried to start a session, but the
BRKTAB file of breakpoint data is not valid.

System action: The command was not run.

User response: Verify that the BRKTAB file (ddname
BRKTAB in the start monitor JCL Xnnnnnn) is a valid
BRKTAB file and was created by the V3R1M0 or later
setup program (starts with characters BT8).

EQACU089S Error opening BRKOUT file

Explanation: You tried to stop a session, but the
BRKOUT file of breakpoint data could not be opened.

System action: The command was not run.

User response: Verify that the BRKOUT file (ddname
BRKOUT in the start monitor JCL Xnnnnnn) exists and
is accessible.

EQACU090S Error writing BRKOUT file

Explanation: You tried to stop a session, but the
BRKOUT file of breakpoint data could not be written.

System action: The ommand was not run.

User response: Verify that the BRKOUT file (ddname
BRKOUT in the start monitor JCL Xnnnnnn) exists and
is accessible.

EQACU091S No ECSA space for BP table

Explanation: You tried to start a session, but the
monitor could not allocate sufficient space for the
breakpoint (BP) table in ECSA.

System action: The command was not run.

User response: Reduce the number of object modules
being tested, or contact the system programmer to
increase ECSA storage.

Related references
Appendix B, “Resources and requirements,” on page
189

EQACU092S No ECSA space for PA table

Explanation: You tried to start a session, but the
monitor could not allocate sufficient space for the
program area (PA) table in ECSA.

System action: The command was not run.

User response: Reduce the number of object modules
being tested, or contact the system programmer to
increase ECSA storage.

Related references
Appendix B, “Resources and requirements,” on page
189

EQACU093S Downlevel Monitor running - cannot
execute command

Explanation: The installed monitor is at a previous
level that is now incompatible.

System action: The command was not run.

User response: Install the current monitor.

Translation: This message is not translated.

EQACU094S No storage in ESQA for monitor tables

Explanation: During the installation of the Coverage
Utility monitor, the monitor could not obtain ESQA
space for its tables.

System action: The installation of the monitor is
terminated.

User response: Contact your system programmer to
determine the amount of ESQA space that is available
on your system.

Related references

EQACU085S • EQACU094S

176 Debug Tool V13.1 Coverage Utility User's Guide and Messages

Appendix B, “Resources and requirements,” on page
189

Translation: This message is not translated.

EQACU095W Dup listing in ID: user_ID
listing_name

Explanation: You started a monitor session that
contains a BRKTAB for a listing or object module that
is being monitored by another session.

System action: The session is started.

User response: If two or more sessions share a
BRKTAB for a listing or object module, the first session
that was started gets all coverage for the listing or
object module. Sessions that are started after the first
have incomplete coverage for any shared listings and
object modules.

EQACU096S The requested session id sess_id was not
found.

Explanation: You issued a command that requires a
session ID, but the session ID (sess_id) was not found.

System action: The command was not run.

User response: Verify that the sess_id is valid. The
session ID is usually your TSO session ID.

EQACU097S The requested session id is not active.
Command rejected.

Explanation: You issued a command that requires a
session ID, but the session ID was not active.

System action: The command was rejected.

User response: Verify that the sess_id is active by
using the EQACUOSE command.

EQACU098S The requested PA# pa_num was not
found.

Explanation: You issued a command that requires a
program area (PA) number, but the PA number pa_num
was not found.

System action: The command was not run.

User response: Verify that the pa_num is valid. The
EQACUOSL command lists the number of PAs for each
listing in a session.

EQACU099S No free sessions in session table -
session not started

Explanation: You attempted to start a new session, but
there are new free sessions in the monitor session table.

System action: The command was not run.

User response: Use the EQACUOSE command to
display active sessions. Stop or quit sessions that are

not needed. Up to 256 sessions can be active.

EQACU100S Session already active, cannot be started
again

Explanation: You attempted to start a new session, but
a session is already started with that session ID.

System action: The command was not run.

User response: Use the EQACUOSE command to
display active sessions. Stop or quit the session with
the name that you are trying to start, or start a session
with a different name.

EQACU101S No previous copy of the monitor exists -
cannot do commands to it

Explanation: The monitor is not installed, or has been
corrupted.

System action: The command was not run.

User response: Reinstall the monitor.

EQACU102S No session table exists.

Explanation: The session table does not exist or has
been corrupted.

System action: The command was not run.

User response: Reinstall the monitor.

EQACU103S The command was not recognized by
Coverage Utility

Explanation: The command was not recognized by the
command processor.

System action: The command was not run.

User response: Because the commands are generated
by REXX execs or created JCL, verify that the REXX or
JCL that issued the command has not been corrupted.

EQACU104S Error number err_num occurred. Contact
Debug Tool support.

Explanation: An undocumented error occurred.

System action: The operation terminates.

User response: Contact Debug Tool support with the
error number and explain the circumstances that
caused it.

EQACU105S Browse of Messages file was unable to
complete.

Explanation: The messages file could not be browsed.
The messages file is used by the monitor commands to
return messages or data.

System action: The function terminates.

EQACU095W • EQACU105S

Appendix A. Messages 177

User response: Check for other messages or ISPF
problems.

EQACU106S Error executing the cmd command. Be
sure that EQACUOCM is in authlib

Explanation: The call to the command processor
failed.

System action: The function terminates.

User response: Ensure that EQACUOCM is in the
specified authorized library.

EQACU107I No sessions currently active.

Explanation: There are no monitor sessions currently
active.

System action: This message is displayed.

User response: None.

EQACU108S Session sess_id has not been stopped.
Verify that the session exists.

Explanation: An error occurred in the EQACUOSP
routine, and the session has not been stopped. The
likely cause for the associated errors is that the
specified session ID does not exist.

System action: Command not run.

User response: Verify that the session indicated exists.
If it does, address other messages and retry, or issue
the EQACUOQT command.

EQACU109S Coverage Utility unidentified BP at addr
xxxxxxxx BP yyyyyyyy

Explanation: Coverage Utility could not identify an
SVC breakpoint inserted into the user program. The
breakpoint is at address xxxxxxxx in the program. The
unidentified breakpoint is yyyyyyyy.

System action: The program terminates with a 7C1
abend.

User response: Follow the instructions in the
following reference.

Related references
“Solving system 7C1 abend in a user program” on
page 161

Translation: This message is not translated.

EQACU110S Coverage Utility unidentified BP at addr
xxxxxxxx BP yyyyyyyy

Explanation: Coverage Utility could not identify an
SVC breakpoint inserted in the user program (that was
running in a CICS environment). The breakpoint is at
address xxxxxxxx in the program. The unidentified
breakpoint is yyyyyyyy.

System action: The program terminates with a 7C1
abend.

User response:
Related references
“Solving system 7C1 abend in a user program” on
page 161

Translation: This message is not translated.

EQACU111S Invalid parameter: xxx

Explanation: The parameter xxx passed to a monitor
program is invalid.

System action: Program terminates.

User response: Provide a correct parameter (or none
to use the installation default).

EQACU112S Unsupported value specified in
parameter xxx.

Explanation: The value passed to parameter xxx is
invalid.

System action: Program terminates.

User response: Provide a correct value for the
parameter (or none to use the installation default).

EQACU113S No BPs in BRKTAB. - session not
started

Explanation: You tried to start a monitor session with
a BRKTAB file (the data on BPs from the setup step)
that contained no breakpoints.

System action: Requested monitor session is not
started.

User response: Verify that you are providing the
correct BRKTAB file in the JCL that starts the session.
Verify that the setup step that created this BRKTAB had
a listing to process that contained executable code.

EQACU114S INTERNAL SOFTWARE ERROR: Literal
xxx was not found.

Explanation: An internal software error occurred.

System action: Program terminates.

User response: Contact Debug Tool support.

EQACU115S Error executing xxxxxxxx. Possible
allocation error

Explanation: EQACUOSP ran the
’prefix.sessionid.EXTEMP.EXEC’4 REXX EXEC to
allocate the output BRKOUT data set. This EXEC could
not allocate the BRKOUT data set OLD.

System action: EQACUOSP terminates without
stopping the session.

EQACU106S • EQACU115S

178 Debug Tool V13.1 Coverage Utility User's Guide and Messages

User response: Determine why the BRKOUT data set
could not be allocated OLD. Correct the problem, and
then rerun EQACUOSP.

EQACU116S Control: Error xxxxxxxx for data set
dddddddd.

Explanation: The specified message (xxxxxxxx) was
returned from the SYSDSN command, indicating that
the specified data set (dddddddd) could not be found or
could not be processed.

System action: Processing terminates.

User response: Correct the data set name specification
or make sure that the data set can be accessed.

EQACU117S Control: oooooooo is not a valid option.

Explanation: The specified option was found on the
command invocation but is not a valid option that is
recognized by this command.

System action: Processing terminates.

User response: Remove or correct the specified option.

EQACU118S Control: Return Code rr from
ALLOCATE allocating dddddddd.

Explanation: Return code rr was returned from the
ALLOCATE command while attempting to allocate the
specified input data set.

System action: Processing terminates.

User response: Correct the data set name specification
or ensure that the data set can be allocated.

EQACU119S Control: Return Code rr from EXECIO
reading dddddddd.

Explanation: Return code rr was returned from the
EXECIO command while attempting to read the
specified data set.

System action: Processing terminates.

User response: Correct the indicated error or correct
the data set name specification.

EQACU120S Control: Invalid DBCS or mixed string.
Check DBCS name(s) on line num of the
control file.

Explanation: The statement shown in the second line
of the message contains a DBCS or mixed string that is
not valid. This statement was found on line number
num in the control file.

System action: Processing terminates.

User response: Correct the DBCS usage in the
statement indicated.

EQACU121S Control: oooooooo is not a valid option
for the ssss statement.

Explanation: A keyword (oooooooo) was specified for
the ssss statement, which is not valid on that statement.

System action: Processing terminates. The statement
in error is shown in the second line of the error
message.

User response: Correct the specified option.

EQACU122S Control: Volume and Unit cannot be
specified without the corresponding
DSName.

Explanation: A keyword FromVol or FromUnit was
specified without FromObjDsn or ToVol or ToUnit was
specified without ToObjDsn statement, which is not
valid on that statement. These operands can be
specified only when the corresponding data set name is
specified.

System action: Processing terminates. The statement
in error is shown in the the error message.

User response: Correct the specified option.

EQACU123S Control: oooooooo is not a valid option
for the ssss statement.

Explanation: A keyword (oooooooo) was specified for
the ssss statement which is not valid on that statement.

System action: Processing terminates. The statement
in error is shown in the the error message.

User response: Correct the specified option.

EQACU124S Control: Required operand omitted
from:

Explanation: You omitted a required operand from the
statement shown in the second line of the message.

System action: Processing terminates. The statement
in error is shown in the error message.

User response: Correct the statement by adding all
required operands.

EQACU125S Control LISTDSN=dddddddd contains an
asterisk specification. However
LISTMEMBER= was not specified. stmt

Explanation: When the data set name dddddddd
contains an asterisk, LISTMEMBER= must be specified to
replace the asterisk.

System action: Processing terminates. The statement
in error is shown in the second line of the error
message.

User response: Correct the statement by adding the

EQACU116S • EQACU125S

Appendix A. Messages 179

LISTMEMBER= operand or removing the asterisk from the
LISTDSN= operand.

EQACU126S Control: llll is a duplicate label on the
following statement. It is ignored. stmt

Explanation: The specified label was previously found
on a statement of the same type.

System action: Processing terminates. The statement
in error is shown in the second line of the error
message.

User response: Change the label to be unique.

EQACU127S Control: llll is not a previously defined
label. The following statement is
ignored. stmt

Explanation: The statement shown in the second line
of the message referenced a label that was not
previously defined.

System action: Processing terminates. The statement
in error is shown in the second line of the error
message.

User response: Correct the label reference.

EQACU128S Control: Return Code rr from EXECIO
writing dddddddd.

Explanation: Return Code rr was returned from the
EXECIO command attempting to write the specified
data set.

System action: Processing terminates.

User response: Correct the indicated error or correct
the data set name specification. *

EQACU129S Control: ffffffff file is not allocated.

Explanation: The specified DDNAME was not
previously allocated.

System action: Processing terminates.

User response: Correct the DDNAME specification or
ensure that the file is allocated.

EQACU130S Control: Last line is continued. It is
ignored.

Explanation: The last non-comment line in the control
file ended in a comma indicating that it was continued.
Since no more lines were found in the file, the partial
line is ignored.

System action: Processing terminates.

User response: Correct the control statement.

EQACU131S Control: Statement ssssssss not
recognized.

Explanation: The indicated keyword is not a valid
control statement type.

System action: Processing terminates. The statement
in error is shown in the second line of the error
message.

User response: Correct the control statement.

EQACU132S Control: oooooooo is not a valid operand
for the kkkkkkkk keyword. stmt

Explanation: The indicated operand is not valid for
the indicated keyword.

System action: Processing terminates. The statement
in error is shown in the second line of the error
message.

User response: Correct the control statement.

EQACU133S Control: Load and Object data sets can
not both be specified within a set of
control cards. stmt

Explanation: The object library control cards
FROMOBJDSN and TOOBJDSN are mutually exclusive
with the load library control cards FROMLOADDSN
and TOLOADDSN within a given control data set.

System action: Processing terminates. The statement
at which the error was detected is shown in the second
line of the error message.

User response: Ensure that only object library control
cards or only load library control cards are used within
a single control data set.

EQACU134S Control: Empty control file data set.

Explanation: The control file data set (Coverage
Utility) exists, but is empty.

System action: Processing terminates.

User response: Ensure that the correct Coverage
Utility control card data set is specified.

EQACU135S Control: No compilation unit statement
found (COBOL, PL/I, ...). No output will
be generated.

Explanation: The specified control file data set does
not contain any compilation unit statements (COBOL,
PL/I, etc.).

System action: Processing terminates.

User response: Ensure that the Coverage Utility
control card data set contains at least one compilation
unit statement.

EQACU126S • EQACU135S

180 Debug Tool V13.1 Coverage Utility User's Guide and Messages

EQACU136S Control: Error at line lll in the control
file. control_file_statement Return Code=rc

Explanation: The indicated control file statement at
the indicated line in the control file is not valid.

System action: Processing terminates.

User response: Correct the indicated statement.

EQACU137I function is starting

Explanation: The specified function is starting.

System action: The function begins execution

User response: None.

EQACU138I function is verifying your parameters

Explanation: The specified function is verifying that
the parameters are correct.

System action: The function continues.

User response: None.

EQACU139I function is done.

Explanation: The specified function has completed.

System action: The function terminates.

User response: None.

EQACU140I Data saved data

Explanation: The specified data has been saved.

System action: The function continues.

User response: None.

EQACU141S Data set data set name not found

Explanation: The specified data set was not found.

System action: The function terminates.

User response: Specify the name of an existing data
set.

EQACU142S Unknown option

Explanation: An unknown option was encountered
when Coverage Utility tried to run a function.

System action: The function terminates.

User response: Contact Debug Tool support.

EQACU143I JCL submitted

Explanation: The JCL to run the requested function
has been submitted.

System action: A batch job is submitted and the
function terminates.

User response: None.

EQACU144I Data set dsn reset

Explanation: The specified control data set has been
reset to the default values.

System action: The function terminates.

User response: None.

EQACU145S Copy error occurred trying to reset data
set dsn

Explanation: When Coverage Utility tried to reset a
control data set from the default template, an error
occurred either in reading the default template file
SEQASAMP or writing to the user control file.

System action: The function terminates.

User response: Verify that the default template file
SEQASAMP is available on the system and that the
user control file that is to be reset can be written to.

EQACU146S Form frm not found.

Explanation: The control file template frm was not
found.

System action: The function terminates.

User response: Ensure that the Sample Dsn field
under “General Defaults” in your user defaults
specifies the data set in which the control file templates
have been installed.

EQACU147S option is not a valid option

Explanation: The specified option is not valid for this
function.

System action: The function terminates.

User response: Correct the option, and then retry the
function.

EQACU148S Error rc allocating dsn

Explanation: An error occurred when Coverage Utility
tried to allocate the specified data set. The allocation
return code is indicated by rc.

System action: The function terminates.

User response: Determine the allocation error, and
then retry the function. Ensure that data sets required
for this function exist.

EQACU136S • EQACU148S

Appendix A. Messages 181

EQACU149I data

Explanation: This message displays information in
support of message EQACU148S.

System action: See the corresponding message.

User response: See the corresponding message.

EQACU150S No output data set specified

Explanation: The function requires the name of an
output data set and none was specified.

System action: The function terminates.

User response: Specify the name of a data set to
contain output from the function.

EQACU151S Error processing input/output data set dsn
: message

Explanation: An error occurred while processing the
data set specified by dsn. Further information about the
error is contained in message. For example, message can
indicate a data set or member not found.

System action: The function terminates.

User response: Correct the specified error, and then
retry the function.

EQACU152S Members specified but input not PDS

Explanation: A member has been specified for a data
set that is not a partitioned data set.

System action: The function terminates.

User response: Do not specify a member name, or
specify the correct data set.

EQACU153S Invalid operand operand

Explanation: An operand that is not valid has been
specified.

System action: The function terminates.

User response: Correct the error, and then retry the
function.

EQACU154S Input is PDS but output is not

Explanation: You cannot place the members of a
partitioned data set into a sequential data set. Both
input and output files must be the same organization.

System action: The function terminates.

User response: Specify a partitioned data set as the
output data set.

EQACU155S Input is sequential but output is PDS

Explanation: The input is a sequential data set, but
the output is a partitioned data set and no member
name has been specified.

System action: The function terminates.

User response: Specify a sequential data set as the
output data set or specify a member name.

EQACU156S Error rc from function

Explanation: The specified function returned the
indicated return code.

System action: The function terminates.

User response: Check for other error messages.

EQACU157S ISPF not active

Explanation: This function requires ISPF to run.

System action: The function terminates.

User response: Start ISPF, and then retry the function.

EQACU158S Operand operand of function is message

Explanation: The indicated operand for this function
is incorrect. Further information is contained in message.

System action: The function terminates.

User response: Correct the operand, and then retry
the function.

EQACU159S operation is not currently supported

Explanation: The indicated operation for this function
is not supported.

System action: The function terminates.

User response: Specify a supported operation.

EQACU160S Error rc deleting dsn

Explanation: An error occurred when trying to delete
the specified data set. rc contains the return code from
delete.

System action: The function terminates.

User response: Correct the error indicated by the
return code, and then retry.

EQACU161S JCL submit error rc

Explanation: The TSO submit failed with rc=rc.

System action: The function terminates.

User response: None.

EQACU149I • EQACU161S

182 Debug Tool V13.1 Coverage Utility User's Guide and Messages

EQACU162I Performing File Tailoring step jcldsn

Explanation: File tailoring is being performed for step
step on data set jcldsn.

System action: The function continues.

User response: None.

EQACU163S FTOpen error rc=rc

Explanation: The FTOpen failed with rc=rc.

System action: The function terminates.

User response: None.

EQACU164S FTIncl error rc=rc

Explanation: The FTIncl failed with rc=rc.

System action: The function terminates.

User response: None.

EQACU165S FTClose error rc=rc

Explanation: The FTClose failed with rc=rc.

System action: The function terminates.

User response: None.

EQACU166S Unable to alloc ddname data set dsname

Explanation: The TSO alloc command for ddname and
dsname failed.

System action: The function terminates.

User response: None.

EQACU167S Unable to read ddname data set dsname

Explanation: Unable to read dsname using ddname.

System action: The function terminates.

User response: None.

EQACU168S Unable to write ddname data set dsname

Explanation: Unable to write dsname using ddname.

System action: The function terminates.

User response: None.

EQACU169S DD not found ddname

Explanation: DD ddname not found allocated.

System action: The function terminates.

User response: None.

EQACU170S ISPExec Error command rc=rc

Explanation: ISPExec Command command failed with
rc=rc.

System action: The function terminates.

User response: None.

EQACU171S Member in use member dsname

Explanation: Member member of data set dsname is
already in use.

System action: The function terminates.

User response: None.

EQACU172S Member not found member dsname

Explanation: Member member of data set dsname could
not be found.

System action: The function terminates.

User response: None.

EQACU173S Data set data set name has a DCB
characteristic of invalid value, but it should
be valid value

Explanation: The specified data set name has a DCB
characteristic (such as LRECL) of invalid value. The JCL
created expects this data set to be preallocated and
therefore cannot change its DCB characteristics.

System action: The function terminates.

User response: Reallocate data set name with a DCB
characteristic of valid value.

EQACU174I Reset of data set cntl canceled

Explanation: The reset of the control file was canceled
by the user.

System action: The function terminates.

User response: None.

EQACU175S Invalid invocation: Missing or invalid
operand

Explanation: A required operand was missing, or an
invalid operand was specified in a program invocation.

System action: The function terminates.

User response: Correct the operand, and then restart.

EQACU176S Data set dsName not found

Explanation: The data set dsName was not found.

System action: The function terminates.

EQACU162I • EQACU176S

Appendix A. Messages 183

User response: Correct the data set name, and then
restart.

EQACU177S Unable to create data set dsName

Explanation: The program was unable to create the
data set dsName.

System action: The function terminates.

User response: Check for other messages or data set
allocation or space problems, or contact your system
programmer.

EQACU178S Data set dsName has a bad DSORG

Explanation: The specified data set has the wrong
DSORG.

System action: The function terminates.

User response: Specify a data set that has the correct
organization for the function.

EQACU179S Unable to alloc import data set dsn

Explanation: The import defaults data set could not be
allocated.

System action: The Manipulate Defaults function
terminates.

User response: Verify that the import defaults data set
is accessible and the name is correct.

EQACU180S Unable to read import data set dsn

Explanation: The import defaults data set could not be
read.

System action: The Manipulate Defaults function
terminates.

User response: Ensure that the import defaults data
set is accessible and is the proper format.

EQACU181S Unable to alloc export data set dsn

Explanation: The export data set to contain the
defaults could not be allocated.

System action: The Manipulate Defaults function
terminates.

User response: Verify that the export defaults data set
is accessible and that the name is correct.

EQACU182S Unable to write export data set dsn

Explanation: The export defaults data set could not be
written.

System action: The Manipulate Defaults function
terminates.

User response: Verify that the export defaults data set

is accessible and that it is the proper format.

EQACU183I Coverage Utility ISPF variables saved

Explanation: The ISPF variables have been saved.

System action: The Manipulate Defaults function
continues.

User response: None.

EQACU184I Coverage Utility ISPF variable edit
canceled

Explanation: The ISPF variables edit has been
canceled

System action: The Manipulate Defaults function
terminates.

User response: None.

EQACU185I Coverage Utility ISPF variables reset
from system defaults

Explanation: The ISPF variables have been reset to the
system defaults.

System action: The Manipulate Defaults function
completes.

User response: None.

EQACU186I Coverage Utility ISPF variables
imported from user data set

Explanation: The ISPF variables have been imported
from your import data set.

System action: The Manipulate Defaults function
completes.

User response: None.

EQACU187I Coverage Utility ISPF variables exported
to user data set

Explanation: The ISPF variables have been exported to
your export data set.

System action: The Manipulate Defaults function
completes.

User response: None.

EQACU188S Unknown command cmd

Explanation: An unknown command was encountered
when Coverage Utility tried to run the defaults
function.

System action: The Manipulate Defaults function
terminates.

User response: Contact Debug Tool support.

EQACU177S • EQACU188S

184 Debug Tool V13.1 Coverage Utility User's Guide and Messages

EQACU193I JCL generation canceled

Explanation: Errors were found before JCL generation
that precluded it from being generated.

System action: Generation of the JCL was not done.

User response: Correct the errors indicated by
previous messages, and then rerun the JCL.

EQACU194I You must link the instrumented objects
into executables after running Setup JCL

Explanation: The instrumented object modules must
be link edited before the program is run.

System action: Processing continues.

User response: Perform the required link edit prior to
execution.

EQACU195S INTERNAL SOFTWARE ERROR: Literal
lll was not found.

Explanation: An internal software error has occurred.

System action: Processing terminates.

User response: Contact your installer or system
programmer.

EQACU196S Return code rc from IEANTCR creating
Name/Token pair for NATLANG.

Explanation: The indicated return code was received
from the IEANTCR MVS service.

System action: Processing terminates.

User response: Contact your installer or system
programmer.

EQACU197S Return code rc from IEANTCR creating
Name/Token pair for LOCALE.

Explanation: The indicated return code was received
from the IEANTCR MVS service.

System action: Processing terminates.

User response: Contact your installer or system
programmer.

EQACU198W The value specified for the NATLANG
option is invalid or disabled.

Explanation: Either the value specified for the
NATLANG option is not a supported value or this
specification has been disabled when Coverage Utility
was installed at your installation.

System action: Processing continues using the default
NATLANG specification.

User response: Correct the indicated value.

EQACU199W The value specified for the Numeric
Format suboption of the LOCALE
option is invalid or disabled.

Explanation: Either the value specified for the third
operand of the LOCALE option is not a supported
value or this specification has been disabled when
Coverage Utility was installed at your installation.

System action: Processing continues using the default
LOCALE specification.

User response: Correct the indicated value.

EQACU200W The value specified for the Date
Format suboption of the LOCALE
option is invalid or disabled.

Explanation: Either the value specified for the first
operand of the LOCALE option is not a supported
value or this specification has been disabled when
Coverage Utility was installed at your installation.

System action: Processing continues using the default
LOCALE specification.

User response: Correct the indicated value.

EQACU201W The value specified for the Time
Format suboption of the LOCALE
option is invalid or disabled.

Explanation: The value specified for the second
operand of the LOCALE option is either not a
supported value or this specification has been disabled
when Coverage Utility was installed at your
installation.

System action: Processing continues using the default
LOCALE specification.

User response: Correct the indicated value.

EQACU202W The value specified for the
LINECOUNT option is not a positive
decimal number less than 99999.

Explanation: The value specified for the LINECOUNT
option is either not a positive decimal number or it is
too large.

System action: Processing continues using the default
LINECOUNT specification.

User response: Correct the indicated value.

EQACU203W NATLANG, LOCALE, or LINECOUNT
was specified as a parameter to an EXEC
when already running under Coverage
Utility ISPF.

Explanation: One of the indicated options was
specified on a Coverage Utility command while
running under the EQASTART command.

EQACU193I • EQACU203W

Appendix A. Messages 185

System action: Processing continues. The values
specified or defaulted on the EQASTART command are
used.

User response: Invoke the Coverage Utility command
without the specified option, or invoke the command
while not running under EQASTART.

EQACU204E Invalid parameter: pppp

Explanation: The indicated parameter is not valid.

System action: Processing terminates.

User response: Correct the indicated parameter.

EQACU205E Text not found from iiii invocation of
EQACU6M with parms pppp qqqq

Explanation: The iiii REXX EXEC could not access its
literal text from the Coverage Utility REXX message
module (EQACU6Mn).

System action: Processing terminates.

User response: Contact your installer or system
programmer.

EQACU206E Error RC= rc from IRXEXCOM by iiii
invocation of EQACU6M with parms
pppp qqqq

Explanation: The indicated return code was returned
by IRXEXCOM while trying to set REXX variables for
the iiii EXEC.

System action: Processing terminates.

User response: Contact your installer or system
programmer.

EQACU207S No parameters were specified on the
invocation of iiii.

Explanation: The iiii REXX EXEC was invoked with
no parameters. One or more parameters are required.

System action: Processing terminates.

User response: Correct the invocation of the EXEC.

EQACU208S Unable to emulate ADDRESS
LINKMVS for program

Explanation: Coverage Utility could not find the
indicated program in the search path for run programs.

System action: Processing terminates.

User response: If you are running in the TSO
foreground, ensure that the Coverage Utility load
module library is specified correctly in defaults. In TSO
batch, ensure that the Coverage Utility load library is
available from either the JOBLIB or STEPLIB.

EQACU209S Return code rc from IDENTIFY macro
loading NLS message table EQACU6M.

Explanation: The specified return code was issued by
the MVS IDENTIFY macro while loading the Coverage
Utility message table.

System action: Processing terminates.

User response: Contact your installer or system
programmer.

EQACU210S Return code rc from ListDSI for dsname.

Explanation: The specified return code was issued by
the LISTDSI command while processing the indicated
data set.

System action: Processing terminates.

User response: Correct the data set specification, and
then rerun the command.

EQACU214S Combine: Combine requires at least 2
input files.

Explanation: Fewer than two input files were
specified for combine.

System action: The combine job is terminated. No
output is produced.

User response: Provide two input files, and then rerun
combine.

EQACU215E Input listing membername was specified
in more than one control statement.

Explanation: The same input listing name appeared
on more than one control statement. This dublication is
not permitted when placing breakpoints in object
modules.

System action: The job is terminated.

User response: Correct the control statement, and then
retry.

EQACU216S Debug Tool is required to use this
function.

Explanation: The Debug Tool product is either not
installed or is not registered on this CPU.

System action: The function or job is terminated.

User response: Contact your system programmer or
installer.

EQACU217S Debug Tool is required to use this
function.

Explanation: The Debug Tool product is either not
installed or is not registered on this CPU.

System action: The function or job is terminated.

EQACU204E • EQACU217S

186 Debug Tool V13.1 Coverage Utility User's Guide and Messages

User response: Contact your system programmer or
installer.

Translation: This message is not translated.

EQACU218S Short SVC number already in use by
another SVC.

Explanation: The SVC number that was supplied for
the short operation code (opcode parameter), which is
the first number passed to the EQACUOIN program, is
used by another product.

System action: The monitor installer (EQACUOIN)
terminates.

User response: Ensure that the first parameter that is
passed to the monitor installer (EQACUOIN program)
in the JCL is a hexadecimal number between C8 and FF
without any surrounding quotation marks, and that the
SVC number is not used by another product.

Translation: This message is not translated.

EQACU219S Long SVC number already in use by
another SVC.

Explanation: The SVC number that was supplied for
the long operation code (opcode parameter), which is
the second number passed to the EQACUOIN program,
is used by another product.

System action: The monitor installer (EQACUOIN)
terminates.

User response: Ensure that the second parameter that
passed to the monitor installer (EQACUOIN program)
in the JCL is a hexadecimal number between C8 and FF
without any surrounding quotation marks, and that the
SVC number is not in use by another product.

Translation: This message is not translated.

EQACU220E Program-ID pattern pattern must be less
than or equal to 8 characters.

Explanation: The pattern specified for Program-ID
exceeds the 8 character limit.

System action: Command terminates.

User response: Re-issue the command with a valid
Program-ID.

EQACU221E Specify only 1 argument for the SELECT
or LOCATE command.

Explanation: The SELECT or LOCATE command contains
more than one argument. Both commands require and
allow only a single argument (Program-ID pattern for
SELECT and Program-ID for LOCATE).

System action: Command terminates.

User response: Re-issue the command with the correct
number of arguments.

EQACU222E command is an invalid command. Valid
Program-ID list commands are SELECT
and LOCATE.

Explanation: Valid commands for the Program-ID
selection panel include SELECT and LOCATE. The
command entered is not SELECT, LOCATE, or any other
valid panel command.

System action: Command terminates.

User response: Re-issue with a valid command.

EQACU223E SELECT requires a Program-ID pattern be
specified.

Explanation: The SELECT command was entered
without a Program-ID pattern.

System action: Command terminates.

User response: Re-issue the SELECT command and
specify a Program-ID pattern.

EQACU224E LOCATE requires a Program-ID be
specified.

Explanation: The LOCATE command was entered
without a Program-ID.

System action: Command terminates.

User response: Re-issue the LOCATE command and
specify a Program-ID.

EQACU225E The specified pattern (pattern) does not
match any Program-IDs in the list.

Explanation: The list contains no Program-IDs that
match the specified Program-ID pattern.

System action: Command terminates.

User response: If necessary, re-issue the SELECT
command specifying a Program-ID pattern that can be
matched.

EQACU226I HTML Targeted Coverage File created.
Differences were highlighted.

Explanation: Informational message indicating that
the HTML output file was created and differences were
found and highlighted.

System action: Targeted code coverage has completed.

User response: None.

EQACU227I HTML Targeted Coverage File created.
No differences could be identified.

Explanation: Informational message indicating that
the HTML output file was created but no differences
can be identified for highlighting.

System action: Targeted code coverage has completed.

EQACU218S • EQACU227I

Appendix A. Messages 187

User response: If you want to identify the differences
and use both the old and new source data sets, verify
whether differences exist. If you used a SuperC data
set, examine the data set to verify whether differences
exist. After correction, rerun the targeted code coverage
tool.

EQACU999S Internal Error: REXX NLS messages not
loaded

Explanation: EQACU6Mn could not be found in the
standard search path. This problem is probably caused
by an installation error. These modules are normally
found in the SEQABMOD load library.

System action: The job is terminated.

User response: Contact your installer or system
programmer.

EQACU999S

188 Debug Tool V13.1 Coverage Utility User's Guide and Messages

Appendix B. Resources and requirements

This section lists the resources that you need to set up and run Coverage Utility
and to produce reports. Required data set attributes and data set definition (DD)
names are also provided.
v “Coverage Utility resources”
v “Coverage Utility requirements” on page 190

Coverage Utility resources
The system resources given in the following topics are required by Coverage
Utility:
v “Setup resources”
v “Monitor CSA, ESQA, and ECSA usage”
v “Report programs” on page 190

Setup resources
Coverage Utility provides the following programs used during the setup process:
v EQACUSET creates the breakpoint data file (BRKTAB). It requires the following

resources:

Description Requirements

Disk space needed for the breakpoint table
(BRKTAB) upon completion of EQACUSET

To determine the size of the BRKTAB data
set in bytes, use the following formula:
128 + (64 + PA name length) ×
number of PAs + 32 × number of
breakpoints 1

Disk space needed for the breakout table
(BRKOUT) upon completion of EQACUSET

128 + (number of breakpoints ÷ 8)

1. For COBOL, PL/I and C, there is approximately one breakpoint per high-level
executable statement. For assembler, there are approximately two breakpoints per
assembler instruction that changes program flow (that is, branch instructions).

v EQACUZPT modifies user object modules to insert breakpoints.
v EQACUZPL builds input to enable EQACUZPP to insert breakpoints in user

load modules.
v EQACUZPP modifies user load modules and program objects to insert

breakpoints.

Monitor CSA, ESQA, and ECSA usage
Because the monitor must be able to trace programs in any address space, it is
loaded in CSA and ESQA space and uses ECSA storage for session tables. The
monitor uses the following system storage when it is installed:
v Fixed amount when the monitor is installed and enabled:

CSA 12616 bytes
ESQA 210 KB

Values: Each of these values is approximate.

© Copyright IBM Corp. 1992, 2014 189

v Each session started uses the following storage in ECSA: 32932 + (number of
breakpoints x 52) + (number of compile units x 128) + (number of program
areas x 96)

Breakpoints are placed at the start of each high-level instruction for COBOL, PL/I,
and C/C++ and at conditional branches in high-level statements (except C/C++)
that can cause a change of program flow (IF, DO WHILE, PERFORM, and others).

If you want an exact count of break points (BPs) for any given session, count the
number of VERIFY or REPLACE statements in the RPTMSGS DDs in the setup job,
or issue a EQACUOSA command for a running monitor session and look at the
BPS TOTALS column.

If you want an exact count of program areas (PAs) for any given session, look at
the last entry in the summary report Program Area Data section for the highest PA
number. The number of PAs in a session is also in the annotated listing report.

Report programs
Coverage Utility provides three report programs:
v EQACUSUM produces a summary report.
v EQACURPT produces an annotated listing report.
v EQACUXML exports an XML file.

The reports programs require the following resources:

Description Requirements

Disk space needed for the summary report
on completion of EQACUSUM

Negligible

Disk space needed for the annotated listing
report on completion of EQACURPT
program

Size of listing

Disk space needed for the export XML
program on completion of EQACUXML

Dependant on the number of breakpoints
and options used

Coverage Utility requirements
Coverage Utility requires several data sets for input and output. This section
identifies each data set by function and ddname and provides the attributes for
each data set.

DDNAME requirements
Then data sets required by Coverage Utility are as follows:

DDNAME Description

BRKOUT Contains Coverage Utility test case results

BRKTAB Contains all breakpoint data used by the monitor program

LIBIN Load modules or program objects input to EQACUZPP. A
concatenation of data sets can be specified.

LIBOUT Load modules or program objects that contain breakpoints output
by EQACUZPP

LISTINB Input listing from COBOL

LISTINP Input listing from PL/I or C/C++

190 Debug Tool V13.1 Coverage Utility User's Guide and Messages

DDNAME Description

LISTINA Input listing from ASM

LISTOUT Output from EQACURPT program (annotated listing report)

SUM Output from EQACUSUM program

SYSIN Input commands for EQACUZPP. These are a subset of the control
statements processed by AMASPZAP.

SYSPRINT Output listing generated by EQACUZPP

Data set attributes
Coverage Utility uses several data sets, whose requirements are as follows:

DDNAME DSORG LRECL BLKSIZE RECFM

BRKOUT PS or PO 256 27904 1 FB

BRKTAB PS or PO 256 27904 1 FB

Coverage
Utility

PS or PO 255 27998 1 VB

LIBIN PO n/a any U

LIBOUT PO n/a any U

LISTINB 2 PS or PO 133 27930 1 FBA

LISTINP PS or PO 125 for OS PL/I or
PL/I for MVS & VM

27998 1 VBA

132 for VisualAge PL/I,
Version 2 Release 2,
and Enterprise PL/I for
z/OS and OS/390
Version 3 Release 1

27998 1

137 for OS/390 C/C++
compiler and
Enterprise PL/I for
z/OS and OS/390
Version 3 Release 2 or
later

27998 1

LISTINA PS or PO 133 for High Level
Assembler

27930 1 FBM

121 for Assembler H 27951 1

LISTOUT PS or PO 133 27930 1 FBA

SUM PS or PO 133 27930 1 FBA

SYSIN PS or PO 80 any FB

SYSPRINT PS or PO 137 any VBA

Notes:

1. Any valid BLKSIZE can be used.

2. LRECL=121, BLKSIZE=12100 (or smaller) for OS/VS COBOL listings.

Appendix B. Resources and requirements 191

192 Debug Tool V13.1 Coverage Utility User's Guide and Messages

Appendix C. DBCS support

This section describes Coverage Utility DBCS (double-byte character set) support.
Support for DBCS varies among tools The following topics gives the support for
the compilers and assemblers and for Coverage Utility itself:
v “DBCS requirements for Coverage Utility compilers and assemblers”
v “DBCS support with Coverage Utility”

DBCS requirements for Coverage Utility compilers and assemblers
The compilers and assemblers supported by Coverage Utility implement DBCS
support that is consistent with the following rules:
1. DBCS characters are delimited by a leading Shift Out (0x0E) byte and a trailing

Shift In (0x0F) byte.
2. There must be an even number of bytes between Shift Out and Shift, which

have values between 0x41 and 0xFE (except the DBCS space 0x4040).
3. Each compiler and assembler has an option that tells the tool whether DBCS is

to be recognized as such (also referred to as enabled).

The following rules apply to identifiers in COBOL and PL/I only:
1. In identifiers, all lowercase DBCS EBCDIC (0x42 in the first byte) are converted

to uppercase. However, PL/I permits DBCS EBCDIC characters in keywords.
2. If an identifier is all DBCS EBCDIC, it is converted to its SBCS (single-byte

character set) equivalent.
3. If an identifier contains one or more non-EBCDIC DBCS characters, the entire

identifier is converted to its DBCS representation.
4. Any DBCS, SBCS, or mixed DBCS and SBCS identifiers that convert to the

same identifier by the previous rules are considered equivalent.
5. The DBCS EBCDIC form of a character is permitted in an identifier name only

if the SBCS version is permitted.

DBCS support with Coverage Utility
DBCS support is implemented in the following ways by Coverage Utility:
v Control files accept DBCS identifiers and DBCS strings within comments.
v Coverage Utility provides DBCS support that is consistent with support

provided by the compilers (except that the DBCS space is not supported within
the control files) except in comments.

v DBCS in control cards is always enabled.
v For COBOL and PL/I, DBCS identifiers are normalized according to the rules in

“DBCS requirements for Coverage Utility compilers and assemblers” before any
comparisons are performed.

v DBCS identifiers in all outputs are in the normalized form.
v All control file keywords, delimiters, and MVS data set names must be entered

in SBCS.
v The COBOL LANGUAGE(JAPANESE) compiler option is permitted.

© Copyright IBM Corp. 1992, 2014 193

194 Debug Tool V13.1 Coverage Utility User's Guide and Messages

Appendix D. FastPath

Coverage Utility FastPath provides a streamlined way to gather coverage
information for your programs. FastPath condenses the process into three steps:
1. Quick start

Quick start combines the setup and start monitor steps into one step. For
programs that consist of one source file, you can enter all the required
information on the panels rather than in a control file.

2. Snapshot summary
Use snapshot summary to check your progress without disrupting your testing.

3. Quick stop
Quick stop stops the monitor session and automatically generates a summary
report. The report indicates the overall effectiveness of your test suite and can
help you decide what annotated listing reports to generate.

FastPath minimizes the steps for average users to run Coverage Utility. Advanced
users, or those with atypical situations, might prefer to use the standard panels in
some cases.

To display the FastPath panel, select option 6 from the Debug Tool Coverage
Utility panel. The FastPath panel is displayed:

The options on this panel are as follows:

Quick Start
Generates JCL to set up and start a monitor session.

Snapshot
Generates JCL to create a summary for a monitor session without stopping
the session.

Quick Stop
Generates JCL to stop a monitor session and generate a summary report.

Related tasks
“Creating quick start JCL from the panels”
“Creating snapshot summary JCL from the panels” on page 200
“Creating quick stop JCL from the panels” on page 202

Creating quick start JCL from the panels
Quick start combines the setup and start monitor session steps. Besides reducing
the number of steps involved in running Coverage Utility, quick start also ensures
that you start the monitor session with the most recent version of your input data
sets. If your programs consist of a single object per load module, and you use the

----------------------------------- FastPath ----------------------------------
Option ===>

1 Quick Start Create JCL for Quick Start
2 Snapshot Create JCL for Snapshot Summary
3 Quick Stop Create JCL for Stop & Summary

Enter END to Terminate

© Copyright IBM Corp. 1992, 2014 195

same member name for the listings, object modules, and load modules, you can
provide all the required information directly on the panels rather than in a control
file. For more complex situations, you can use a Coverage Utility control file to
drive quick start.

For the following cases, you can be more efficient by starting and stopping the
monitor session by using the normal Coverage Utility setup, start session, and stop
session commands:
v Testing a large program that does not change over a period of time
v Collecting coverage per test case

Quick start always analyzes your listings or load modules to create a new
instrumented program and breakpoint data. You do not need to do this, if your
program does not change. For large programs that do not change, you can save
time by not using quick start and doing this setup analysis.

If you want to collect coverage per test case (for example, to determine the most
efficient test case bucket), you can use the EQACUOSN and EQACUORE
commands after each test case. The quick stop command always stops the session
and produces a summary report. The Snapshot command produces a cumulative
summary of testing up to that point, but does not reset coverage statistics.

If you are instrumenting object modules, you must link them into executable load
modules after you run quick start and before you run your tests. Also, if you are
instrumenting load modules in place (which is not recommended), you must
ensure that quick start did not previously instrument your load module.

To set up and start a monitor session to measure code coverage, select option 1
from the FastPath panel. The Create JCL for Quick Start panel is displayed:

The options and fields on this panel are as follows:

-------------------------- Create JCL for Quick Start -------------------------
Option ===>

1 Generate Generate JCL from parameters
2 Edit Edit JCL
3 Submit Submit JCL
4 Parameters Quick Start Parameters

Enter END to Terminate

Session ID YOUNG

Programming Language. . COBOL (COBOL|PL/I|C|ASM)

CA Control File (optional):
Control File Dsn. . .

(If the Control File is specified, any program names below are ignored.)

Program Names:
Primary Program Name. COB01

Additional Programs . COB02 COB03
COB04 COB05
COB06 COB07
COB08 COB09
COB10 COB11
COB12 COB13
COB14 COB15

196 Debug Tool V13.1 Coverage Utility User's Guide and Messages

Generate
Generates JCL from the parameters that you specify on the panel.

Edit Displays an ISPF edit session where you can make changes to existing JCL.

Submit
Submits for execution the JCL that you specify in the JCL Dsn field on this
panel.

Parameters
Displays a panel that enables you to set additional parameters used in the
JCL generation.

Session ID
An ID session for your session. This ID defaults to your TSO user ID.
Multiple testers can use the monitor simultaneously.

Programming Language
The programming language of your source code. The following values are
accepted:
v COBOL
v PL/I or PLI
v C or C++ or CPP (all of these are equivalent)
v ASM

Control File Dsn (optional)
The name of the control file data set that contains the locations of the
listing files, the object or load module libraries, and the libraries to copy
the instrumented versions into, and specifies the members to be processed.

If you specify the Control File Dsn, the Primary Program Name is used
for generated program names only if Use Program Name for File Name
(available on the Quick Start Parameters panel) is Yes. In this case, quick
start ignores the Additional Programs field.

Primary Program Name
The name of a program that is monitored by quick start. Generated data
set names also use this name when Use Program Name for File Name
(available on the Quick Start Parameters panel) is Yes.

Restriction: The listing, object modules, and load modules must all have
the same member name, and you must have only one object per load
module in order to run FastPath using program names. Otherwise, you
must use a control file.

Additional Programs
The names of other programs that are monitored by quick start.

Related tasks
“Running multiple user sessions” on page 76

Quick start parameters
Use the Quick Start Parameters panel to provide information about the data sets to
be used for setup and the monitor session. If you do not specify a control file,
some of the fields on this panel are required. If the fields are not filled in, this
panel is displayed the first time that you request JCL generation.

Appendix D. FastPath 197

The options and fields on this panel are as follows:

Session ID
An ID for your session. This ID defaults to your TSO user ID. Multiple
testers can use the monitor simultaneously.

Programming Language
The programming language of your source code. The following values are
accepted:
v COBOL
v PL/I or PLI
v C or C++ or CPP (all of these are equivalent)
v ASM

Object or Load
The type of setup to be done. You can instrument object modules or load
modules. If you instrument object modules, you must link the
instrumented objects into executable load modules after you run quick
start, and before you run your tests.

Instrumenting of load modules is not supported for VisualAge PL/I
Version 2 Release 2, Enterprise PL/I for z/OS and OS/390 and Enterprise
PL/I for z/OS.

Instrumenting of object modules is not supported for Enterprise COBOL
for z/OS Version 5.

When required:

This name is required if you do not specify the Control File Dsn.

Compiler Listing
The name of the data set that contains the compiler listings for the
programs to be monitored.

---------------------------- Quick Start Parameters ---------------------------
Command ===>

Enter END (to Exit and Save changes) or CANCEL (to Exit without saving)

Session ID YOUNG

Programming Language. . COBOL (COBOL|PL/I|C|ASM)

Object or Load. LOAD (OBJ|LOAD)

Compiler Listing. . . . ’YOUNG.SAMPLE.COBOLST’

Original Library. . . . ’YOUNG.SAMPLE.LOADLIB’

Instrumented Library. . ’YOUNG.SAMPLE.RUNLIB’

Control File:
Control File Dsn. . .

Use Program Name for File Name YES (Yes|No) Program Name COB01

JCL Library and Member:
JCL Dsn ’YOUNG.SAMPLE.JCL(SCOB01)’

Breakpoint Table:
Breakpoint Table Dsn. ’YOUNG.SAMPLE.COB01.BRKTAB’

Monitor Output File:
Breakout Dsn. ’YOUNG.SAMPLE.COB01.BRKOUT’

198 Debug Tool V13.1 Coverage Utility User's Guide and Messages

When required: This name is required if you do not specify the Control
File Dsn.

Original Library
The name of the data set that contains the object or load modules to be
instrumented. This field is required only if you instrument object modules.
If you instrument load modules in place (this is not recommended), you
can leave this field blank and enter the name of data set that contains the
load modules in the Instrumented Library field.

When required: This field is required if you do not specify the Control
File Dsn.

Instrumented Library
The name of the data set where Coverage Utility stores the instrumented
copies of the object or load modules.

When required: This name is required if you do not specify the Control
File Dsn.

Control File Dsn (optional)
The name of the control file data set that contains the locations of the
listing files, the object or load module libraries, and the libraries to copy
the instrumented versions into, and specifies the members to be processed.

If you specify the Control File Dsn, the following fields are ignored:
Object or Load, Compiler Listing, Original Library, and Instrumented
Library.

Use Program Name for File Name
Enter Yes if you want to construct data set names from the default
high-level qualifier, the specified program name, and the default low-level
qualifier for the following data sets:
v JCL Dsn
v Breakpoint Table Dsn
v Breakout Dsn

When you press Enter, the affected data set names on the panel change
automatically. Coverage Utility normally uses the program name to
construct the data names.

Program Name
The name to use for Coverage Utility files when you enter Yes in the Use
Program Name for File Name field. This name can be any valid name; it
does not have to be the name of any of your programs. Names of the
following form are created:
v Sequential data sets:

'proj_qual.program_name.file_type'
For example: 'YOUNG.SAMPLE.COB01.BRKTAB'

v Partitioned data sets:

'proj_qual.file_type(program_name)'
For example: 'YOUNG.SAMPLE.BRKTAB(COB01)'

JCL Library and Member
The name of the JCL library data set and member to hold the generated
JCL.

Appendix D. FastPath 199

Default: If you set the Use Program Name for File Name field to Yes,
then the member name or program name qualifier of the data set will be
Txxxxxxx, where xxxxxxx is the last seven characters of the program name.

Breakpoint Table Dsn
The name of the BRKTAB data set that is created during setup and used by
the monitor program.

Breakout Dsn
The name of the BRKOUT data set that is created during execution and
used by the summary and report programs.

Related tasks
“Running multiple user sessions” on page 76

Creating snapshot summary JCL from the panels
A snapshot summary is a summary report that is generated against the data
collected by a running monitor session, without stopping the session. You can use
snapshot summaries to check the status of your testing efforts. By issuing the
EQACUORE command after each snapshot summary, you can generate an
independent summary report for each test in your test suite without stopping and
restarting the monitor. Otherwise, each summary is the cumulative result of all
testing since the monitor session was started.

Saving data: Snapshot summary does not save the coverage data for a snapshot. If
you want to save the coverage data, particularly if you are issuing EQACUORE,
use the snapshot command from the Control the Monitor panel to generate a
BRKOUT data set that contains the raw coverage data.

To create JCL to generate a snapshot summary, select option 2 from the FastPath
panel. The Create JCL for Snapshot Summary panel is displayed:

The options and fields on the panel are as follows:

Generate
Generates JCL from the parameters that you specify on the panel.

----------------------- Create JCL for Snapshot Summary -----------------------
Option ===>

1 Generate Generate JCL from parameters
2 Edit Edit JCL
3 Submit Submit JCL

Enter END to Terminate

Session ID. YOUNG

Use Program Name for File Name YES (Yes|No) Program Name COB01

Input Files:
Breakpoint Table Dsn. ’YOUNG.SAMPLE.COB01.BRKTAB’

JCL Library and Member:
JCL Dsn ’YOUNG.SAMPLE.JCL(TCOB01)’

Output Summary Type and File:
Type. INTERNAL (Internal|External)
Inline N (I|N)
Report Dsn ’YOUNG.SAMPLE.COB01.SUMMARY’

(* for default sysout class)

200 Debug Tool V13.1 Coverage Utility User's Guide and Messages

Edit Displays an ISPF edit session where you can change existing JCL.

Submit
Submits for execution the JCL that you specify in the JCL Dsn field on this
panel.

Session ID
An ID for your session. This ID defaults to your TSO user ID. Multiple
testers can use the monitor simultaneously.

Use Program Name for File Name
Enter Yes if you want to construct the data set names from the default
high-level qualifier, the specified program name, and the default low-level
qualifier for each data set.

When you press Enter, the file names on the panel change automatically.
Coverage Utility normally uses the program name to construct the data set
names.

Program Name
The name to use for Coverage Utility files when you enter Yes in the Use
Program Name for File Name field. This name can be any valid name; it
does not have to be the name of any of your programs. Names of the
following form are created:
v Sequential data sets:

'proj_qual.program_name.file_type'
For example: 'YOUNG.SAMPLE.COB01.BRKTAB'

v Partitioned data sets:

'proj_qual.file_type(program_name)'
For example: 'YOUNG.SAMPLE.BRKTAB(COB01)'

Breakpoint Table Dsn
The name of the BRKTAB data set that is created during setup and used by
the monitor program.

JCL Library and Member
The name of the JCL library data set and member to hold the generated
JCL.

Default: If you set the Use Program Name for File Name field to Yes,
then the member name or program name qualifier of the data set will be
Txxxxxxx, where xxxxxxx is the last seven characters of the program name.

Type The type of summary report to be produced.
Internal

The report contains information about each program area.
External

Report contains information with all program areas combined.

This option is ignored for assembler program areas.

Inline For languages for which Coverage Utility supports optimized code, the
summary processor might include or ignore counts and percentages from
inline code.
I Include all lines of inline code in the summary counts and

percentages.
N Do not include inline code in the summary counts and

percentages.

Appendix D. FastPath 201

Report Dsn
The name of the data set to contain the summary report.

Related concepts
“The effects of inlining” on page 132
Related tasks
“Running multiple user sessions” on page 76

Creating quick stop JCL from the panels
Use quick stop to generate JCL to stop a monitor session and generate a summary
report in one step. This is convenient, because you will normally want to run a
summary report on the overall coverage. You do not need to use quick start to use
quick stop.

To create JCL to stop a monitor session and generate a summary report, select
option 3 from the FastPath panel. The Create JCL for Stop & Summary panel is
displayed:

The options and fields on the panel are as follows:

Generate
Generates JCL from the parameters that you specify on the panel.

Edit Displays an ISPF edit session where you can change existing JCL.

Submit
Submits for execution the JCL that you specify in the JCL Dsn field on this
panel.

Parameters
Displays a panel that enables you to set additional parameters used in the
JCL generation.

Session ID
An ID for your session. This ID defaults to your TSO user ID.Multiple
testers can use the monitor simultaneously.

Use Program Name for File Name
Enter Yes if you want to construct the data set names from the default
high-level qualifier, the specified program name, and the default low-level
qualifier for each data set.

------------------------ Create JCL for Stop & Summary ------------------------
Option ===>

1 Generate Generate JCL from parameters
2 Edit Edit JCL
3 Submit Submit JCL
4 Parameters Quick Stop Parameters

Enter END to Terminate

Session ID. YOUNG

Use Program Name for File Name YES (Yes|No) Program Name COB01

Output Summary Dsn:
Report Dsn ’YOUNG.SAMPLE.COB01.SUMMARY’

(* for default sysout class)

202 Debug Tool V13.1 Coverage Utility User's Guide and Messages

When you press Enter, the file names on the panel are changed
automatically. Coverage Utility normally uses the program name to
construct the data set names.

Program Name
The name to use for Coverage Utility files when you enter Yes in the Use
Program Name for File Name field. This name can be any valid name; it
does not have to be the name of any of your programs. Names of the
following form are created:
v Sequential data sets:

'proj_qual.program_name.file_type'
For example: 'YOUNG.SAMPLE.COB01.BRKTAB'

v Partitioned data sets:

'proj_qual.file_type(program_name)'
For example: 'YOUNG.SAMPLE.BRKTAB(COB01)'

Report Dsn
The name of the data set to contain the summary report.

Related tasks
“Running multiple user sessions” on page 76

Quick stop parameters
Use the Quick Stop Parameters panel to specify additional information for the data
sets to be used for the output data and report, and the type of summary report
produced.

The options and fields on this panel are as follows:

Session ID
An ID for your session. This ID defaults to your TSO user ID. Multiple
testers can use the monitor simultaneously.

Use Program Name for File Name
Enter Yes if you want to construct the data set names from the default
high-level qualifier, the specified program name, and the default low-level
qualifier for each data set.

---------------------------- Quick Stop Parameters ----------------------------
Command ===>

Enter END to Exit and Save changes

Session ID. YOUNG

Use Program Name for File Name YES (Yes|No) Program Name COB01

Input Files:
Breakpoint Table Dsn. ’YOUNG.SAMPLE.COB01.BRKTAB’
Breakout Dsn. ’YOUNG.SAMPLE.COB01.BRKOUT’

JCL Library and Member:
JCL Dsn ’YOUNG.SAMPLE.JCL(TCOB01)’

Output Summary Type and File:
Type. INTERNAL (Internal|External)
Inline N (I|N)
Report Dsn ’YOUNG.SAMPLE.COB01.SUMMARY’

(* for default sysout class)

Appendix D. FastPath 203

When you press Enter, the file names on the panel change automatically.
Coverage Utility normally uses the program name to construct the data set
names.

Program Name
The name to use for Coverage Utility files when you enter Yes in the Use
Program Name for File Name field. This name can be any valid name; it
does not have to be the name of any of your programs. Names of the
following form are created:
v Sequential data sets:

'proj_qual.program_name.file_type'
For example: 'YOUNG.SAMPLE.COB01.BRKTAB'

v Partitioned data sets:

'proj_qual.file_type(program_name)'
For example: 'YOUNG.SAMPLE.BRKTAB(COB01)'

Breakpoint Table Dsn
The name of the BRKTAB data set that is created during setup and used by
the monitor program.

Breakout Dsn
The name of the BRKOUT data set that is created during execution and
used by the summary and report programs.

JCL Library and Member
The name of the JCL library data set and member to hold the generated
JCL.

Default: If you set the Use Program Name for File Name field to Yes,
then the member name or program name qualifier of the data set will be
Txxxxxxx, where xxxxxxx is the last seven characters of the program name.

Type The type of summary report to be produced.
Internal

The report contains information about each program area.
External

The report contains information with all program areas combined.

This option is ignored for assembler program areas.

Inline For languages for which Coverage Utility supports optimized code, the
summary processor might include or ignore counts and percentages from
inline code.
I Include all lines of inlined code in the summary counts and

percentages.
N Do not include inline code in the summary counts and

percentages.

Report Dsn
The name of the data set to contain the summary report.

Related concepts
“The effects of inlining” on page 132
Related tasks
“Running multiple user sessions” on page 76

204 Debug Tool V13.1 Coverage Utility User's Guide and Messages

Appendix E. Parameters that are common to multiple routines

There are three parameters, described in this section, that are common to multiple
Coverage Utility routines:
v “LINECOUNT” on page 206
v “LOCALE” on page 206
v “NATLANG” on page 208

You can specify these parameters in several different contexts:
v Part of a blank-delimited or comma-delimited PARM string for various Coverage

Utility programs
v Blank-delimited operands on various TSO commands, such as EQASTART

When these parameters are passed to Coverage Utility programs in the PARM
field, they must come after any parameters that are specific to a particular routine.
Generally, the specific parameters must appear in the order that is described in the
documentation for the particular routine.

The following general syntax rules apply to LINECOUNT, LOCALE, and
NATLANG (but do not necessarily apply to parameters specific to a routine):
1. Parameters can appear in any order.
2. When passed as operands to the following commands or as parameters to the

following commands and programs, each parameter must be separated from
preceding and following parameters by one or more blanks:
v EQACUOBP
v EQACUOSA
v EQACUOSE
v EQACUOSL
v EQACUOSP
v EQACURPT
v EQACUSUM
v EQASTART
When passed as parameters to the following commands and programs, each
parameter must be separated from preceding and following parameters by a
comma:
v EQACUOCM
v EQACUOID
v EQACUOPF
v EQACUOPN
v EQACUOQT
v EQACUORE
v EQACUOSN
v EQACUSET
v EQACUZPL
v EQACUZPP
v EQACUZPT

3. Each parameter is identified by a keyword. The keyword can be abbreviated by
shortening it to the minimum number of characters required to make it unique
from other valid keywords.

4. If a value is expected for the keyword, the value must be enclosed in
parentheses following the keyword.

© Copyright IBM Corp. 1992, 2014 205

5. If multiple values for a keyword are specified, each of the values must be
separated by a comma.

6. Blanks can appear before or after commas or parentheses.

You can specify LINECOUNT, LOCALE, and NATLANG and their associated
values wherever the common_parameters are permitted. If you do not specify one or
more of these keywords, a default value is used.

Changed defaults: Although the standard default values are indicated below,
these defaults can be changed when Coverage Utility is installed on your machine.

If LINECOUNT, LOCALE, or NATLANG is specified on an invocation of
EQASTART, these specifications are remembered by EQASTART and become the
default if the parameters are not specified on subsequent invocations of
EQASTART. In addition, when any of the other TSO commands are invoked under
an ISPF session initiated by EQASTART, these parameters cannot be specified on the
TSO commands. In this case, the commands use the values specified or defaulted on
the EQASTART invocation. Similarly, when any of the monitor commands are run
under ISPF but not under EQASTART, they remember these specifications and use
them as the default the next time one of the monitor commands is run under ISPF.

Whenever LINECOUNT, LOCALE, or NATLANG is permitted, all are accepted
and used in any appropriate situation. However, the corresponding specification is
used only when applicable. For example, all operands of LOCALE are accepted
even if the program never displays a date or time value.

LINECOUNT
The LINECOUNT parameter controls the number of lines (including headings)
printed on a page. Not all output files contain carriage control characters, and
some files that do contain control characters are not created with pages of a
predetermined size. Hence, not all output files will be governed by this parameter.

�� LINECOUNT (
66
line_ct) ��

where

line_ct
A decimal number less than 99999.

LOCALE
The LOCALE parameter specifies the way dates, times, and numbers are to be
formatted. The syntax of this parameter is:

�� LOCALE (
1

date_fmt
1

,
1

time_fmt ,
numeric_fmt

�

206 Debug Tool V13.1 Coverage Utility User's Guide and Messages

�) ��

where

date_fmt
The format for the parts of a date, including the sequence and separators. In
addition to the following predefined formats, installation-specific formats
might be available. See your local installer for information about
installation-specific date formats.

1 MM/DD/YYYY

2 MM/DD/YY

3 DD/MM/YYYY

4 DD/MM/YY

5 YY.DDD

6 YYYY.DDD

7 YYYY/MM/DD

8 YYYYMMDD

9 June DD, YYYY

10 Jun DD, YYYY

11 DD-Jun-YYYY

12 DD June YYYY

13 JUNE DD, YYYY

14 JUN DD, YYYY

15 DD-JUN-YYYY

16 DD JUNE, YYYY

time_fmt
The format for hours, seconds, and minutes. In addition to the following
predefined formats, installation-specific formats might be available. See your
local installer for information about installation-specific time formats.

1 HH:MM:SS

2 HH:MM:SSam

3 HH:MM:SSAM

numeric_fmt
The format for numbers with regard to commas and periods. In addition to the
following predefined formats, installation-specific formats might be available.
See your local installer for information about installation-specific numeric
formats.

1 1,234,567.89

2 1.234.567,89

Appendix E. Parameters that are common to multiple routines 207

NATLANG
The NATLANG parameter specifies that national language to be used to display
program messages. The syntax of this parameter is:

�� NATLANG (
ENU
language_id
UEN
JPN
KOR

) ��

language_id
One of the following IDs:

ENU English

UEN Uppercase English

JPN Japanese

Feature needed: JPN is not a valid choice unless the JPN feature of
Debug Tool has been installed.

KOR Korean

Feature needed: KOR is not a valid choice unless the KOR feature of
Debug Tool has been installed.

Example: Common parameters
The following examples show how the parameters LINECOUNT, LOCALE, and
NATLANG might be passed to the Coverage Utility routine EQACUSUM:
1. This example requests LOCALE date format 2, the default LOCALE time

format, LOCALE numeric format 2, and a LINECOUNT of 72.
//STEP1 EXEC PGM=EQACUSUM,PARM=’I N N LOC(2,,2) LINEC(72)’

2. This example requests national language ENU and LOCALE time format 2.
//STEP1 EXEC PGM=EQACUSUM,PARM=’I N N NATL(ENU) LOCALE(,2)’

These examples show how these parameters might be passed to EQASTART:
1. This example requests LOCALE date format 2, the default LOCALE time

format, LOCALE numeric format 2, and a LINECOUNT of 72.
EQASTART LO(2,,2) LINE(72)

2. This example requests national language ENU and LOCALE time format 2.
EQASTART NATL(ENU) LOCALE(,2)

208 Debug Tool V13.1 Coverage Utility User's Guide and Messages

Appendix F. Exported XML data

Although Coverage Utility produces reports that explain the coverage data
collected, you might want to process this data using other programs. You might
even want to write your own programs to do specialized types of postprocessing
of this data.

To do this processing or postprocessing, you must export the coverage data
collected by the monitor in a format that can be easily parsed and understood by
other programs. Coverage Utility supports the exporting of this data in XML
format. This format is widely used, self-defining, and portable among applications.

If you want to write your own programs to process coverage data, use the export
data function to output the coverage data in an XML format that can be used as
input to other programs. The format and content of this XML file and the supplied
DTD are given in the following sections.

Related references
“XML file description”
“XML DTD” on page 215

XML file description
This section describes the contents of the XML file. The following table shows the
XML tags, attributes, and data that can appear in the exported file together with
the associated data.

XML tag and attributes Notes® Description

<?xml version="1.0" standalone="no"?> Standard header

<!DOCTYPE CoverageFile SYSTEM
"EQACUDTD.dtd">

Reference DTD under standard name.

<CoverageFile Version="1.0"> One of these per file.

<RunDate> Date that the coverage data was saved.

<Year>2001</Year>

<Month>04</Month>

<Day>24</Day>

</RunDate>

<RunTime> Time that the coverage data was saved

<Hours>10</Hours>

<Minutes>14</Minutes>

<Seconds>22</Seconds>

</RunTime>

<LoadModule> One or more load modules per CoverageFile. The
same load module can appear more than once.

<MemberName> loadmod </MemberName> The name of the load module (member). One to
eight characters.

<Listing One or more listings per LoadModule.

© Copyright IBM Corp. 1992, 2014 209

XML tag and attributes Notes® Description

Language="COBOL | PLI | C
| Assembler "

This keyword value indicates the language used in
the source that generated the listing.

>

<DSName>dsname</DSName> The name of the data set that contains the listing.

<CompilationUnit One CompilationUnit per Listing. (Coverage Utility
does not currently support processing of more than
one compilation unit per listing.)

Source="Listing" Listing indicates that the compiler listing was used
to breakpoint this CompilationUnit.

Mode="Performance | Branch" Performance indicates that only basic branch data is
available (whether or not a breakpoint or statement
was executed). If Branch is in effect, information
about whether branches were taken or
fallen-through is also available.

Counts="Executed | Frequency" Executed indicates that only information as to
whether a breakpoint or statement is or is not
executed is kept. If Frequency is in effect, the
number of times that each statement or breakpoint
was executed is also available.

NumberPAs="22" The number of program areas in this compilation
unit.

NumberBPs="55" P The number of breakpoints in this compilation unit.

ExecutedBPs="33" P The number of breakpoints in this compilation unit
that were executed.

>

<CreateDate> The date that the program was instrumented for
coverage. If a listing data set is modified after this
date, it might no longer match this run.

<Year>2001</Year>

<Month>04</Month>

<Day>23</Day>

</CreateDate>

<CreateTime> The time that the program was instrumented for
coverage. If a listing data set is modified after this
time, it might no longer match this run.

<Hours>10</Hours>

<Minutes>14</Minutes>

<Seconds>22</Seconds>

</CreateTime>

<TestId>idstring</TestId> An identification string supplied by user. (optional)

<CSECT> The name of the CSECT that contains the following
program areas. There is one of these names per
compilation unit.

210 Debug Tool V13.1 Coverage Utility User's Guide and Messages

XML tag and attributes Notes® Description

<ExtName>csect_name</ExtName> The name of the CSECT that contains the following
program areas. The meaning of this field varies
slightly depending on the source language, as
follows:
v COBOL - External PROGRAM ID
v Assembler - first CSECT name
v PLI - External Procedure name
v C - CSECT name

Exceptions:
v For C code with NOCSECT and no #pragma csect

in effect and for Assembler code where the first
CSECT name is blank, this tag is not present.

v For Assembler, only the first CSECT in the
CompilationUnit is shown. Subsequent CSECTs
are included in the form of ProgramAreas.

<ProgramArea The name of the program area. There is one or more
of these names per CSECT.

NumberBPs="22" P The number of breakpoints in this PA.

BPsExecuted="1440" P The total number of breakpoints executed in this PA.

BPExecutions="2222" P The total number of times that a breakpoint was
executed for all breakpoints in this PA. The number
might not be accurate for a PA that contains only
one statement. It is only 0 (not executed) or 1
(executed 1 or more times).

>

<PAName>PA_name</PAName> The name or label assigned to this PA. There is one
of these names per PA. The value of PA_name can be
null. More than one PA can have the same name. In
this case, these might or might not correspond to
distinct areas in the source.

<Executed> A list of the statement or lline numbers that were
executed. There are zero or more of these per PA.

1 2 5 11 12 13 ... Zero or more decimal numbers separated by blanks.

</Executed>

<Unexecuted> A list of the statement or line numbers that were not
executed. There are zero or more of these per PA.

3 4 6 7 8 9 10 ... Zero or more decimal numbers separated by blanks.

</Unexecuted>

<BranchBoth> B A list of the statement or line numbers that
contained conditional branches that were taken both
ways (that is, the branch was taken and the branch
was not taken). There are zero or more of these per
PA.

5 8 11 ... B Zero or more decimal numbers separated by blanks.

</BranchBoth> B

<BranchFallThru> B A list of the statement or line numbers that
contained conditional branches that were not taken
but were executed. There are zero or more of these
per PA.

6 9 12 ... B Zero or more decimal numbers separated by blanks.

Appendix F. Exported XML data 211

XML tag and attributes Notes® Description

</BranchFallThru> B

<BranchOnly> B A list of the statement or line numbers that
contained conditional branches that were taken but
never fell through.. There are zero or more of these
per PA.

7 13 15 ... B Zero or more decimal numbers separated by blanks.

</BranchOnly> B

<BranchNeither> B A list of the statement or line numbers that
contained conditional branches that were not
executed.. There are zero or more of these per PA.

29 37 ... B Zero or more decimal numbers separated by blanks.

</BranchNeither> B

<BranchUncond> B A list of the statement or line numbers that
contained unconditional branches (that is, branches
that cannot fall through). This tag is generated from
assembler source code only. (This does not
necessarily imply the presence of a BRANCH
instruction; it can result from an SVC, SELECT, and
so on.). There are zero or more of these per PA.

2 6 ... B Zero or more decimal numbers separated by blanks.

</BranchUncond> B

<Frequency F An indication of how many times the indicated
statement or line was executed. Present only if
Counts="Frequency" is specified as a ProgramArea
attribute. There are zero or more of these per PA.

Stmt="1" F Statement or line number

Count="11" F Number of times executed. The number might not
be accurate for a statement in a PA that contains
only one statement. It is only 0 (not executed) or 1
(executed 1 or more times).

/> F

<BP P Detailed information about each breakpoint in the
PA. There can be multiple BP records for each
statement or line. A BP is generated for all
executable statements and is not generated for any
non-executable statements. There are zero or more of
these per PA.

Branch="No | CondTrue |
CondFalse | Always"

P Indicates whether this breakpoint represents a
non-branch statement (No), the “True” path of a
conditional branch (CondTrue), the “False” path of a
conditional branch (CondFalse), or a branch that
always branches (assembler code only).

Offset="1C8X" P Offset of the breakpoint in the CSECT.

Optimization= "NotInLine | InLine" P If InLine, this breakpoint is part of in-lined code.

212 Debug Tool V13.1 Coverage Utility User's Guide and Messages

XML tag and attributes Notes® Description

NumberStmts="0 | 1 | nnn" P "1" indicates that this is the first breakpoint for this
statement or line. "0" indicates that the breakpoint is
in the same statement as the previous breakpoint.

For assembler source modules only, the value can be
any positive integer and indicates the number of
executable statements represented by this
breakpoint.

Stmt="123" P The statement or line number that contains the
breakpoint. Omitted if NumberStmts=0 or if
Language="Assembler".

ExecutionCount="123" P If Counts="Executed" is in effect, this is 0 if the
breakpoint was not executed and 1 if it was
executed. If Counts="Frequency" is in effect, this is
the number of times the breakpoint was executed.
The count might not be accurate for a PA that
contains only one statement. It is only 0 (not
executed) or 1 (executed 1 or more times).

AsmTargetOffset= "1C4X" P When the Frequency option was specified during
setup, Language="Assembler", and this breakpoint
represents a branch (Branch\="No"), this is the offset
in the target of the branch.

/> P

</ProgramArea>

<ProgramArea> ... </ProgramArea>

</CSECT>

<CSECT> ... </CSECT>

</CompilationUnit>

<CompilationUnit> ... </CompilationUnit>

</Listing>

<Listing> ... </Listing>

</LoadModule>

<LoadModule> ... </LoadModule>

</CoverageFile>

Notes: When the Notes column contains a letter, the letter corresponds to one of the following notes:

B This tag or attribute is present only if Mode="Branch" is specified on the CompilationUnit tag and Branch
Analysis data is requested when the XML file is exported.

F This tag or attribute is present only if Counts="Frequency" is specified on the CompilationUnit tag and
Frequency data is requested when the XML file is exported.

P This tag or attribute is present only if Breakpoint Details is requested when the XML file is exported.

The XML tags and attributes have several types of values:
v Decimal values (such as, "22") represent a single decimal number.
v Hexadecimal values that are followed by a character "X" (such as, "124CX")

represent a hexadecimal number. (The "X" will be present as part of the value.)
v Text items that are separated by "|" (such as "COBOL | PLI") represent a choice

of keywords (one of the items in the list will be specified as the value).

Appendix F. Exported XML data 213

v Values in italics represent a character string that is appropriate for the item (such
as dsname indicates that dsname is a character string representing a data set
name).

All text values are in non-DBCS EBCDIC. DBCS values are not currently
supported.

Related references
“XML DTD” on page 215
“Sections of the summary report” on page 109

Statement or line numbers
Within a particular program area and tag group (such as, Executed), statement or
line numbers always appears in ascending order. However, statement or line
numbers in different tag groups within a ProgramArea might not be. For example,
the following is valid:

<Executed>60 61 62 66 67 71 72</Executed>
<Unexecuted>67</Unexecuted>
<Executed>74</Executed>

In most cases, when a tag contains one or more statement or line numbers, each of
these numbers represents the statement or line number as shown in the compiler
listing. However, assembler language source programs are different. When
Language="Assembler" is specified for a Listing, all statement or line numbers are
specified in the form nnnx(nnn) where the nnnx outside the parenthesis is the offset
in the containing CSECT and the nnn inside the parenthesis indicates the number
of executable statements represented by this offset.

Within a ProgramArea tag, the same statement or line number does not appear
more than once in the Executed and Unexecuted tags.

The same statement or line number can appear more than once in the Branch
Analysis tags. This repetition indicates that the statement contained more than one
conditional branch.

Execution of statements with breakpoints
When a statement contains more than one breakpoint, the first breakpoint in the
statement is used to determine whether the statement was executed and to
compute frequency counts.

When more than one disjoint section of code exists for a statement, the statement is
considered to be executed if the first breakpoint in any disjoint section is executed.

XML output for in-lined routines
Processing of code that contains in-lined routines (currently present in C/C++
only) creates the following changes to the normal XML output:
v The statement or line numbers for these in-lined routines can appear in lists

such as the Executed, Unexecuted, or BranchBoth lists in multiple ProgramAreas
(each program area in which the in-lining occurred as well as the program area
corresponding to the out-of-line copy, if present). Each time one of these
statement or line numbers appears, it will be suffixed by the letter “I” (such as
121I).

v If an out-of-line copy of the routine exists in C/C++, the statistics that are
generated for that ProgramArea are an accumulation of the statistics for all
copies (both in-lined and out-of-line) of the routine.

214 Debug Tool V13.1 Coverage Utility User's Guide and Messages

Optional sections
Certain sections of data (such as, <Frequency>...) are output only if the coverage
run was set up using the corresponding options and the corresponding data was
requested when the XML file was exported.

XML DTD
This section shows the XML DTD that is shipped as member EQACUDTD of the
SEQASAMP library. This DTD defines the syntax of all exported XML files. This
DTD is referenced in the exported XML file by the name EQACUDTD.dtd. Hence,
if you use an XML parser to parse the exported XML file, you must make this
SEQASAMP member available under that name on the system where the XML is
to be parsed.

Appendix F. Exported XML data 215

<?xml version="1.0" encoding="UTF-8"?>

<!-- DTD for CoverageFile Version 1.0 -->

<!-- A CoverageFile consists of RunDate, RunTime, and -->
<!-- one or more LoadModules -->

<!ELEMENT CoverageFile (RunDate, RunTime, LoadModule+)>
<!ATTLIST CoverageFile Version CDATA #FIXED "1.0">

<!ELEMENT RunDate (Year, Month, Day)>
<!ELEMENT RunTime (Hours, Minutes, Seconds)>

<!-- A LoadModule consists of MemberName and one or more Listing -->

<!ELEMENT LoadModule (MemberName, Listing+)>
<!ELEMENT MemberName (#PCDATA)> <!-- 1 to 8 characters -->

<!-- A Listing consists of DSName and one or more CompilationUnit -->

<!ELEMENT Listing (DSName, CompilationUnit)>
<!ATTLIST Listing Language (COBOL|PLI|C|Assembler) #REQUIRED>

<!ELEMENT DSName (#PCDATA)> <!-- 1 to 54 characters-->

<!-- A CompilationUnit consists of CreateDate, CreateTime, -->
<!-- optional TestId, and a CSECT -->

<!ELEMENT CompilationUnit (CreateDate, CreateTime, TestId?, CSECT)>
<!ATTLIST CompilationUnit Source (Listing) "Listing"

Mode (Performance|Branch)
"Performance"

Counts (Executed|Frequency) "Executed"
NumberPAs CDATA #REQUIRED
NumberBPs CDATA #IMPLIED
ExecutedBPs CDATA #IMPLIED>

<!ELEMENT CreateDate (Year, Month, Day)>
<!ELEMENT CreateTime (Hours, Minutes, Seconds)>
<!ELEMENT TestId (#PCDATA)> <!-- 1 to 16 characters -->

<!-- A CSECT consists of optional ExtName and one or more -->
<!-- ProgramArea -->

<!ELEMENT CSECT (ExtName?, ProgramArea+)>
<!ELEMENT ExtName (#PCDATA)> <!-- 1 to 1024 characters -->
<!-- A ProgramArea consists of PAName, and zero or more of the -->
<!-- following (in any order): Executed, Unexecuted, BranchBoth, -->
<!-- BranchFallThru, BranchNeither, BranchUncond, Frequency, BP. -->

<!ELEMENT ProgramArea (PAName, (Executed*, Unexecuted*, BranchBoth*,
BranchOnly*, BranchFallThru*, BranchNeither*,
BranchUncond*, Frequency*, BP*)*)>

<!ATTLIST ProgramArea NumberBPs CDATA #IMPLIED
BPsExecuted CDATA #IMPLIED
BPExecutions CDATA #IMPLIED>

<!ELEMENT PAName (#PCDATA)> <!-- any number of characters -->
<!ELEMENT Executed (#PCDATA)> <!-- 0 or more decimal numbers

separated by blanks -->
<!ELEMENT Unexecuted (#PCDATA)> <!-- 0 or more decimal numbers

separated by blanks -->
<!ELEMENT BranchBoth (#PCDATA)> <!-- 0 or more decimal numbers

separated by blanks -->
<!ELEMENT BranchOnly (#PCDATA)> <!-- 0 or more decimal numbers

separated by blanks -->

216 Debug Tool V13.1 Coverage Utility User's Guide and Messages

Example: Exported XML file
This section shows a sample exported XML file that corresponds to the summary
report for the example summary report for COB01 in COBOL. This example is for
reference purposes only and might not correspond exactly to the file that is
exported from the corresponding program.

The coverage run that generated this file was run with the following options:
v Performance Mode Off
v Frequency Count Mode Off
v Debug Mode Off

The XML data was exported using the following options:
v Branch Analysis - YES
v Frequency - n/a (The setting of this option is not applicable, because the

coverage run did not collect frequency data.)
v Breakpoint Details - NO

<!ELEMENT BranchFallThru (#PCDATA)> <!-- 0 or more decimal numbers
separated by blanks -->

<!ELEMENT BranchNeither (#PCDATA)> <!-- 0 or more decimal numbers
separated by blanks -->

<!ELEMENT BranchUncond (#PCDATA)> <!-- 0 or more decimal numbers
separated by blanks -->

<!ELEMENT Frequency EMPTY>
<!ATTLIST Frequency Stmt CDATA #REQUIRED

Count CDATA #REQUIRED>
<!ELEMENT BP EMPTY>

<!ATTLIST BP Branch (No|Always|CondTrue|CondFalse) "No"
Offset CDATA #REQUIRED
Optimization (NotInLine|InLine) "NotInLine"
NumberStmts CDATA "1"
Stmt CDATA #IMPLIED
ExecutionCount CDATA #REQUIRED
AsmTargetOffset CDATA #IMPLIED>

<!-- Common tags used by multiple elements -->

<!ELEMENT Year (#PCDATA)> <!-- 4 decimal digits -->
<!ELEMENT Month (#PCDATA)> <!-- 2 decimal digits (01 to 12) -->
<!ELEMENT Day (#PCDATA)> <!-- 2 decimal digits (01 to 31) -->

<!ELEMENT Hours (#PCDATA)> <!-- 2 decimal digits (00 to 23) -->
<!ELEMENT Minutes (#PCDATA)> <!-- 2 decimal digits (00 to 59) -->
<!ELEMENT Seconds (#PCDATA)> <!-- 2 decimal digits (00 to 59) -->

Appendix F. Exported XML data 217

<?xml version="1.0" standalone="no"?>

<!DOCTYPE CoverageFile SYSTEM "EQACUDTD.dtd">

<CoverageFile Version="1.0">
<RunDate>

<Year>1999</Year>
<Month>07</Month>
<Day>22</Day>

</RunDate>
<RunTime>

<Hours>12</Hours>
<Minutes>57</Minutes>
<Seconds>19</Seconds>

</RunTime>
<LoadModule>

<MemberName>COB01</MemberName>
<Listing Language="COBOL">

<DSName>YOUNG.SAMPLE.COBOLST(COB01A)</DSName>
<CompilationUnit Source="Listing" Mode="Branch" Counts="Executed" NumberPAs="5">

<CreateDate>
<Year>1999</Year>
<Month>07</Month>
<Day>10</Day>

</CreateDate>
<CreateTime>

<Hours>07</Hours>
<Minutes>50</Minutes>
<Seconds>38</Seconds>

</CreateTime>
<CSECT>

<ExtName>COB01A</ExtName>
<ProgramArea>

<PAName>PROG</PAName>
<Executed>42 45 46 49 50 51</Executed>
<Unexecuted></Unexecuted>

</ProgramArea>
<ProgramArea>

<PAName>PROGA</PAName>
<Executed>55 57 62</Executed>
<Unexecuted>59</Unexecuted>
<Executed>64</Executed>
<BranchBoth>55 62</BranchBoth>
<BranchOnly>57</BranchOnly>

</ProgramArea>
<ProgramArea>

<PAName>PROCA</PAName>
<Unexecuted>69</Unexecuted>

</ProgramArea>
<ProgramArea>

<PAName>LOOP1</PAName>
<Executed>72 73 74</Executed>
<BranchFallThru>72</BranchFallThru>

</ProgramArea>
<ProgramArea>

<PAName>LOOP2</PAName>
<Executed>77 78</Executed>
<BranchFallThru>77</BranchFallThru>

</ProgramArea>
</CSECT>

</CompilationUnit>
</Listing>

218 Debug Tool V13.1 Coverage Utility User's Guide and Messages

<Listing Language="COBOL">
<DSName>YOUNG.SAMPLE.COBOLST(COB01B)</DSName>
<CompilationUnit Source="Listing" Mode="Branch" Counts="Executed" NumberPAs="3">

<CreateDate>
<Year>2001</Year>
<Month>08</Month>
<Day>10</Day>

</CreateDate>
<CreateTime>

<Hours>07</Hours>
<Minutes>50</Minutes>
<Seconds>39</Seconds>

</CreateTime>
<CSECT>

<ExtName>COB01B</ExtName>
<ProgramArea>

<PAName>PROGB</PAName>
<Executed>33 35 36 39 42</Executed>
<Unexecuted>41</Unexecuted>
<BranchBoth>33</BranchBoth>
<BranchFallThru>35</BranchFallThru>
<BranchOnly>39</BranchOnly>

</ProgramArea>
<ProgramArea>

<PAName>PROCB</PAName>
<Executed>46</Executed>

</ProgramArea>
<ProgramArea>

<PAName>LOOP1</PAName>
<Executed>49 50 51</Executed>
<BranchFallThru>49</BranchFallThru>

</ProgramArea>
</CSECT>

</CompilationUnit>
</Listing>
<Listing Language="COBOL">

<DSName>YOUNG.SAMPLE.COBOLST(COB01C)</DSName>
<CompilationUnit Source="Listing" Mode="Branch" Counts="Executed" NumberPAs="4">

<CreateDate>
<Year>2001</Year>
<Month>08</Month>
<Day>10</Day>

</CreateDate>
<CreateTime>

<Hours>07</Hours>
<Minutes>50</Minutes>
<Seconds>40</Seconds>

</CreateTime>
<CSECT>

<ExtName>COB01C</ExtName>
<ProgramArea>

<PAName>PROGC</PAName>
<Executed>33 35 36 39 40</Executed>
<BranchBoth>33 35 39</BranchBoth>

</ProgramArea>
<ProgramArea>

<PAName>PROCC</PAName>
<Executed>44 45</Executed>
<Unexecuted>47</Unexecuted>
<BranchOnly>45</BranchOnly>

</ProgramArea>

Appendix F. Exported XML data 219

Related references
“Example: COBOL summary report” on page 111

<ProgramArea>
<PAName>LOOP1</PAName>
<Executed>52 53 54</Executed>
<Unexecuted>56</Unexecuted>
<BranchFallThru>52</BranchFallThru>
<BranchOnly>54</BranchOnly>

</ProgramArea>
<ProgramArea>

<PAName>LOOP2</PAName>
<Executed>60 61</Executed>
<BranchFallThru>60</BranchFallThru>

</ProgramArea>
</CSECT>

</CompilationUnit>
</Listing>
<Listing Language="COBOL">

<DSName>YOUNG.SAMPLE.COBOLST(COB01D)</DSName>
<CompilationUnit Source="Listing" Mode="Branch" Counts="Executed" NumberPAs="3">

<CreateDate>
<Year>2001</Year>
<Month>08</Month>
<Day>10</Day>

</CreateDate>
<CreateTime>

<Hours>07</Hours>
<Minutes>50</Minutes>
<Seconds>42</Seconds>

</CreateTime>
<CSECT>

<ExtName>COB01D</ExtName>
<ProgramArea>

<PAName>PROGD</PAName>
<Unexecuted>33 35 36 38</Unexecuted>
<BranchNeither>33 35</BranchNeither>
</ProgramArea>
<ProgramArea>
<PAName>PROCD</PAName>
<Unexecuted>42</Unexecuted>
</ProgramArea>
<ProgramArea>
<PAName>LOOP1</PAName>
<Unexecuted>46</Unexecuted>
</ProgramArea>

</CSECT>
</CompilationUnit>

</Listing>
</LoadModule>

</CoverageFile>

220 Debug Tool V13.1 Coverage Utility User's Guide and Messages

Appendix G. Support resources and problem solving
information

This section shows you how to quickly locate information to help answer your
questions and solve your problems. If you have to call IBM support, this section
provides information that you need to provide to the IBM service representative to
help diagnose and resolve the problem.

For a comprehensive multimedia overview of IBM software support resources, see
the IBM Education Assistant presentation “IBM Software Support Resources for
System z® Enterprise Development Tools and Compilers products” at
http://publib.boulder.ibm.com/infocenter/ieduasst/stgv1r0/index.jsp?topic=/
com.ibm.iea.debugt/debugt/6.1z/TrainingEducation/SupportInfoADTools/
player.html.
v “Searching knowledge bases”
v “Getting fixes” on page 223
v “Subscribing to support updates” on page 223
v “Contacting IBM Support” on page 224

Searching knowledge bases
You can search the available knowledge bases to determine whether your problem
was already encountered and is already documented.
v Searching the information center
v Searching product support documents

Searching the information center
You can find this publication and documentation for many other products in the
IBM System z Enterprise Development Tools & Compilers information center at
http://publib.boulder.ibm.com/infocenter/pdthelp/v1r1/index.jsp. Using the
information center, you can search product documentation in a variety of ways.
You can search across the documentation for multiple products, search across a
subset of the product documentation that you specify, or search a specific set of
topics that you specify within a document. Search terms can include exact words
or phrases, wild cards, and Boolean operators.

To learn more about how to use the search facility provided in the IBM System z
Enterprise Development Tools & Compilers information center, you can view the
multimedia presentation at http://publib.boulder.ibm.com/infocenter/pdthelp/
v1r1/index.jsp?topic=/com.ibm.help.doc/InfoCenterTour800600.htm.

Searching product support documents
If you need to look beyond the information center to answer your question or
resolve your problem, you can use one or more of the following approaches:
v Find the content that you need by using the IBM Support Portal at

www.ibm.com/software/support or directly at www.ibm.com/support/entry/
portal.
The IBM Support Portal is a unified, centralized view of all technical support
tools and information for all IBM systems, software, and services. The IBM

© Copyright IBM Corp. 1992, 2014 221

http://publib.boulder.ibm.com/infocenter/ieduasst/stgv1r0/index.jsp?topic=/com.ibm.iea.debugt/debugt/6.1z/TrainingEducation/SupportInfoADTools/player.html
http://publib.boulder.ibm.com/infocenter/ieduasst/stgv1r0/index.jsp?topic=/com.ibm.iea.debugt/debugt/6.1z/TrainingEducation/SupportInfoADTools/player.html
http://publib.boulder.ibm.com/infocenter/ieduasst/stgv1r0/index.jsp?topic=/com.ibm.iea.debugt/debugt/6.1z/TrainingEducation/SupportInfoADTools/player.html
http://publib.boulder.ibm.com/infocenter/pdthelp/v1r1/index.jsp
http://publib.boulder.ibm.com/infocenter/pdthelp/v1r1/index.jsp?topic=/com.ibm.help.doc/InfoCenterTour800600.htm
http://publib.boulder.ibm.com/infocenter/pdthelp/v1r1/index.jsp?topic=/com.ibm.help.doc/InfoCenterTour800600.htm
http://www.ibm.com/software/support
http://www.ibm.com/support/entry/portal
http://www.ibm.com/support/entry/portal

Support Portal lets you access the IBM electronic support portfolio from one
place. You can tailor the pages to focus on the information and resources that
you need for problem prevention and faster problem resolution.
Familiarize yourself with the IBM Support Portal by viewing the demo videos at
https://www.ibm.com/blogs/SPNA/entry/
the_ibm_support_portal_videos?lang=en_us about this tool. These videos
introduce you to the IBM Support Portal, explore troubleshooting and other
resources, and demonstrate how you can tailor the page by moving, adding, and
deleting portlets.
Access a specific IBM Software Support site:
– Application Performance Analyzer for z/OS Support
– Debug Tool for z/OS Support
– Enterprise COBOL for z/OS Support
– Enterprise PL/I for z/OS Support
– Fault Analyzer for z/OS Support
– File Export for z/OS Support
– File Manager for z/OS Support
– WebSphere® Studio Asset Analyzer for Multiplatforms Support
– Workload Simulator for z/OS and OS/390 Support

v Search for content by using the IBM masthead search. You can use the IBM
masthead search by typing your search string into the Search field at the top of
any ibm.com® page.

v Search for content by using any external search engine, such as Google, Yahoo,
or Bing. If you use an external search engine, your results are more likely to
include information that is outside the ibm.com domain. However, sometimes
you can find useful problem-solving information about IBM products in
newsgroups, forums, and blogs that are not on ibm.com. Include "IBM" and the
name of the product in your search if you are looking for information about an
IBM product.

v The IBM Support Assistant (also referred to as ISA) is a free local software
serviceability workbench that helps you resolve questions and problems with
IBM software products. It provides quick access to support-related information.
You can use the IBM Support Assistant to help you in the following ways:
– Search through IBM and non-IBM knowledge and information sources across

multiple IBM products to answer a question or solve a problem.
– Find additional information through product and support pages, customer

news groups and forums, skills and training resources and information about
troubleshooting and commonly asked questions.

In addition, you can use the built in Updater facility in IBM Support Assistant to
obtain IBM Support Assistant upgrades and new features to add support for
additional software products and capabilities as they become available.
For more information, and to download and start using the IBM Support
Assistant for IBM System z Enterprise Development Tools & Compilers
products, please visit http://www.ibm.com/support/docview.wss?rs=2300
&context=SSFMHB&dc=D600&uid=swg21242707&loc=en_US&cs=UTF-8
&lang=en.
General information about the IBM Support Assistant can be found on the IBM
Support Assistant home page at http://www.ibm.com/software/support/isa.

222 Debug Tool V13.1 Coverage Utility User's Guide and Messages

https://www.ibm.com/blogs/SPNA/entry/the_ibm_support_portal_videos?lang=en_us
https://www.ibm.com/blogs/SPNA/entry/the_ibm_support_portal_videos?lang=en_us
http://www.ibm.com/software/awdtools/apa/support/
http://www.ibm.com/software/awdtools/debugtool/support/
http://www.ibm.com/software/awdtools/cobol/zos/support/
http://www.ibm.com/software/awdtools/pli/plizos/support/
http://www.ibm.com/software/awdtools/faultanalyzer/support/
http://www.ibm.com/software/awdtools/fileexport/support/
http://www.ibm.com/software/awdtools/filemanager/support/
http://www.ibm.com/software/awdtools/wsaa/support/
http://www.ibm.com/software/awdtools/workloadsimulator/support/
http://www.ibm.com/support/docview.wss?rs=2300&context=SSFMHB&dc=D600&uid=swg21242707&loc=en_US&cs=UTF-8&lang=en
http://www.ibm.com/support/docview.wss?rs=2300&context=SSFMHB&dc=D600&uid=swg21242707&loc=en_US&cs=UTF-8&lang=en
http://www.ibm.com/support/docview.wss?rs=2300&context=SSFMHB&dc=D600&uid=swg21242707&loc=en_US&cs=UTF-8&lang=en
http://www.ibm.com/software/support/isa

Getting fixes
A product fix might be available to resolve your problem. To determine what fixes
and other updates are available, select a link from the following list:
v Latest PTFs for Application Performance Analyzer for z/OS
v Latest PTFs for Debug Tool for z/OS
v Latest PTFs for Fault Analyzer for z/OS
v Latest PTFs for File Export for z/OS
v Latest PTFs for File Manager for z/OS
v Latest PTFs for Optim™ Move for DB2
v Latest PTFs for WebSphere Studio Asset Analyzer for Multiplatforms
v Latest PTFs for Workload Simulator for z/OS and OS/390

When you find a fix that you are interested in, click the name of the fix to read its
description and to optionally download the fix.

Subscribe to receive e-mail notifications about fixes and other IBM Support
information as described in Subscribing to Support updates..

Subscribing to support updates
To stay informed of important information about the IBM products that you use,
you can subscribe to updates. By subscribing to receive updates, you can receive
important technical information and updates for specific Support tools and
resources. You can subscribe to updates by using the following:
v RSS feeds and social media subscriptions
v My Notifications

RSS feeds and social media subscriptions
For general information about RSS, including steps for getting started and a list of
RSS-enabled IBM web pages, visit the IBM Software Support RSS feeds site at
http://www.ibm.com/software/support/rss/other/index.html. For information
about the RSS feed for the IBM System z Enterprise Development Tools &
Compilers information center, refer to the Subscribe to information center updates
topic in the information center at http://publib.boulder.ibm.com/infocenter/
pdthelp/v1r1/topic/com.ibm.help.doc/subscribe_info.html.

My Notifications
With My Notifications, you can subscribe to Support updates for any IBM product.
You can specify that you want to receive daily or weekly email announcements.
You can specify what type of information you want to receive (such as
publications, hints and tips, product flashes (also known as alerts), downloads, and
drivers). My Notifications enables you to customize and categorize the products
about which you want to be informed and the delivery methods that best suit your
needs.

To subscribe to Support updates, follow the steps below. Additional information is
provided at http://www.ibm.com/support/docview.wss?rs=615
&uid=swg21172598.
1. Go to the IBM software support site at http://www.ibm.com/software/

support.

Appendix G. Support resources and problem solving information 223

http://www.ibm.com/support/docview.wss?rs=2300&context=SSFMHB&dc=DB520&uid=swg21213431&loc=en_US&cs=UTF-8&lang=en
http://www.ibm.com/support/docview.wss?rs=615&context=SSGTSD&uid=swg21164374&loc=en_US&cs=utf-8&lang=en+en
http://www.ibm.com/support/docview.wss?rs=273&context=SSXJAJ&uid=swg21171963&loc=en_US&cs=utf-8&lang=en+en
http://www.ibm.com/support/docview.wss?rs=1052&context=SSHL8A&q1=PTF&uid=swg21196524&loc=en_US&cs=utf-8&lang=en
http://www.ibm.com/support/docview.wss?rs=274&context=SSXJAV&uid=swg21170609&loc=en_US&cs=utf-8&lang=en+en
http://www.ibm.com/support/docview.wss?rs=0&q1=latest+fixes+information&uid=swg21314423
http://www.ibm.com/support/docview.wss?rs=422&context=SSXJB2&dc=DB520&uid=swg21206838&loc=en_US&cs=UTF-8&lang=en
http://www.ibm.com/support/docview.wss?rs=788&context=SSL28L&dc=DB520&uid=swg21266100&loc=en_US&cs=utf-8&lang=en
http://www.ibm.com/software/support/rss/other/index.html
http://publib.boulder.ibm.com/infocenter/pdthelp/v1r1/topic/com.ibm.help.doc/subscribe_info.html
http://publib.boulder.ibm.com/infocenter/pdthelp/v1r1/topic/com.ibm.help.doc/subscribe_info.html
http://www.ibm.com/support/docview.wss?rs=615&uid=swg21172598
http://www.ibm.com/support/docview.wss?rs=615&uid=swg21172598
http://www.ibm.com/software/support
http://www.ibm.com/software/support

2. Click the My Notifications link in the Notifications portlet on the page that is
displayed.

3. If you have already registered for My notifications, sign in and skip to the
next step. If you have not registered, click register now. Complete the
registration form using your e-mail address as your IBM ID and click Submit.

4. In the My notifications tool, click the Subscribe tab to specify products for
which you want to receive e-mail updates.

5. To specify Problem Determination Tools products, click Other software and
then select the products for which you want to receive e-mail updates, for
example, Debug Tool for z/OS and File Manager for z/OS.

6. To specify a COBOL or PL/I compiler, click Rational® and then select the
products for which you want to receive e-mail updates, for example,
Enterprise COBOL for z/OS.

7. After selecting all products that are of interest to you, scroll to the bottom of
the list and click Continue.

8. Determine how you want to save your subscription. You can use the default
subscription name or create your own by entering a new name in the Name
field. It is recommended that you create your own unique subscription name
using something easily recognized by you. You can create a new folder by
entering a folder name in the New field or select an existing folder from the
pulldown list. A folder is a container for multiple subscriptions.

9. Specify the types of documents you want and the e-mail notification
frequency.

10. Scroll to the bottom of the page and click Submit.

To view your current subscriptions and subscription folders, click My
subscriptions.

If you experience problems with the My notifications feature, click the Feedback
link in the left navigation panel and follow the instructions provided.

Contacting IBM Support
IBM Support provides assistance with product defects, answering FAQs, and
performing rediscovery.

After trying to find your answer or solution by using other self-help options such
as technotes, you can contact IBM Support. Before contacting IBM Support, your
company must have an active IBM maintenance contract, and you must be
authorized to submit problems to IBM. For information about the types of
available support, see the information below or refer to the Support portfolio topic
in the Software Support Handbook at http://www14.software.ibm.com/webapp/
set2/sas/f/handbook/offerings.html.
v For IBM distributed software products (including, but not limited to, Tivoli®,

Lotus®, and Rational products, as well as DB2 and WebSphere products that run
on Windows, or UNIX operating systems), enroll in Passport Advantage® in one
of the following ways:

Online
Go to the Passport Advantage Web site at http://www.lotus.com/
services/passport.nsf/ WebDocs/Passport_Advantage_Home and click
How to Enroll.

By phone
For the phone number to call in your country, go to the Contacts page of

224 Debug Tool V13.1 Coverage Utility User's Guide and Messages

http://www14.software.ibm.com/webapp/set2/sas/f/handbook/offerings.html
http://www14.software.ibm.com/webapp/set2/sas/f/handbook/offerings.html
http://www.lotus.com/services/passport.nsf/WebDocs/Passport_Advantage_Home
http://www.lotus.com/services/passport.nsf/WebDocs/Passport_Advantage_Home

the IBM Software Support Handbook on the Web at http://
www14.software.ibm.com/webapp/set2/sas/f/handbook/contacts.html
and click the name of your geographic region.

v For customers with Subscription and Support (S & S) contracts, go to the
Software Service Request Web site at http://www.ibm.com/support/
servicerequest.

v For customers with IBMLink, CATIA, Linux, S/390®, iSeries®, pSeries, zSeries,
and other support agreements, go to the IBM Support Line Web site at
http://www.ibm.com/services/us/index.wss/so/its/a1000030/dt006.

v For IBM eServer™ software products (including, but not limited to, DB2 and
WebSphere products that run in zSeries, pSeries, and iSeries environments), you
can purchase a software maintenance agreement by working directly with an
IBM sales representative or an IBM Business Partner. For more information
about support for eServer software products, go to the IBM Technical Support
Advantage Web site at http://www.ibm.com/servers/eserver/techsupport.html.

If you are not sure what type of software maintenance contract you need, call
1-800-IBMSERV (1-800-426-7378) in the United States. From other countries, go to
the Contacts page of the IBM Software Support Handbook on the Web at
http://www14.software.ibm.com/webapp/set2/sas/f/handbook/contacts.html
and click the name of your geographic region for phone numbers of people who
provide support for your location.

Complete the following steps to contact IBM Support with a problem:
1. “Define the problem and determine the severity of the problem”
2. “Gather diagnostic information” on page 226
3. “Submit the problem to IBM Support” on page 226

To contact IBM Software support, follow these steps:

Define the problem and determine the severity of the problem
Define the problem and determine severity of the problem When describing a
problem to IBM, be as specific as possible. Include all relevant background
information so that IBM Support can help you solve the problem efficiently.

IBM Support needs you to supply a severity level. Therefore, you need to
understand and assess the business impact of the problem that you are reporting.
Use the following criteria:

Severity 1
The problem has a critical business impact. You are unable to use the
program, resulting in a critical impact on operations. This condition
requires an immediate solution.

Severity 2
The problem has a significant business impact. The program is usable, but
it is severely limited.

Severity 3
The problem has some business impact. The program is usable, but less
significant features (not critical to operations) are unavailable.

Severity 4
The problem has minimal business impact. The problem causes little
impact on operations, or a reasonable circumvention to the problem was
implemented.

Appendix G. Support resources and problem solving information 225

http://www14.software.ibm.com/webapp/set2/sas/f/handbook/contacts.html
http://www14.software.ibm.com/webapp/set2/sas/f/handbook/contacts.html
http://www.ibm.com/support/servicerequest
http://www.ibm.com/support/servicerequest
http://www.ibm.com/services/us/index.wss/so/its/a1000030/dt006
http://www.ibm.com/servers/eserver/techsupport.html
http://www14.software.ibm.com/webapp/set2/sas/f/handbook/contacts.html

For more information, see the Getting IBM support topic in the Software Support
Handbook at http://www14.software.ibm.com/webapp/set2/sas/f/handbook/
getsupport.html.

Gather diagnostic information
To save time, if there is a Mustgather document available for the product, refer to
the Mustgather document and gather the information specified. Mustgather
documents contain specific instructions for submitting your problem to IBM and
gathering information needed by the IBM support team to resolve your problem.
To determine if there is a Mustgather document for this product, go to the product
support page and search on the term Mustgather. At the time of this publication,
the following Mustgather documents are available:
v Mustgather: Read first for problems encountered with Application Performance

Analyzer for z/OS: http://www.ibm.com/support/docview.wss?rs=2300
&context=SSFMHB&q1=mustgather&uid=swg21265542&loc=en_US&cs=utf-8
⟨=en

v Mustgather: Read first for problems encountered with Debug Tool for z/OS:
http://www.ibm.com/support/docview.wss?rs=615&context=SSGTSD
&q1=mustgather&uid=swg21254711&loc=en_US&cs=utf-8&lang=en

v Mustgather: Read first for problems encountered with Fault Analyzer for
z/OS:http://www.ibm.com/support/docview.wss?rs=273&context=SSXJAJ
&q1=mustgather&uid=swg21255056&loc=en_US&cs=utf-8&lang=en

v Mustgather: Read first for problems encountered with File Manager for z/OS:
http://www.ibm.com/support/docview.wss?rs=274&context=SSXJAV
&q1=mustgather&uid=swg21255514&loc=en_US&cs=utf-8&lang=en

v Mustgather: Read first for problems encountered with Enterprise COBOL for
z/OS: http://www.ibm.com/support/docview.wss?rs=2231&context=SS6SG3
&q1=mustgather&uid=swg21249990&loc=en_US&cs=utf-8&lang=en

v Mustgather: Read first for problems encountered with Enterprise PL/I for z/OS:
http://www.ibm.com/support/docview.wss?rs=619&context=SSY2V3
&q1=mustgather&uid=swg21260496&loc=en_US&cs=utf-8&lang=en

If the product does not have a Mustgather document, please provide answers to
the following questions:
v What software versions were you running when the problem occurred?
v Do you have logs, traces, and messages that are related to the problem

symptoms? IBM Software Support is likely to ask for this information.
v Can you re-create the problem? If so, what steps were performed to re-create the

problem?
v Did you make any changes to the system? For example, did you make changes

to the hardware, operating system, networking software, and so on.
v Are you currently using a workaround for the problem? If so, be prepared to

explain the workaround when you report the problem.

Submit the problem to IBM Support
You can submit your problem to IBM Support in one of three ways:

Online using the IBM Support Portal
Click Service request on the IBM Software Support site at
http://www.ibm.com/software/support. On the right side of the Service
request page, expand the Product related links section. Click Software

226 Debug Tool V13.1 Coverage Utility User's Guide and Messages

http://www14.software.ibm.com/webapp/set2/sas/f/handbook/getsupport.html
http://www14.software.ibm.com/webapp/set2/sas/f/handbook/getsupport.html
http://www.ibm.com/support/docview.wss?rs=2300&context=SSFMHB&q1=mustgather&uid=swg21265542&loc=en_US&cs=utf-8&lang=en
http://www.ibm.com/support/docview.wss?rs=2300&context=SSFMHB&q1=mustgather&uid=swg21265542&loc=en_US&cs=utf-8&lang=en
http://www.ibm.com/support/docview.wss?rs=2300&context=SSFMHB&q1=mustgather&uid=swg21265542&loc=en_US&cs=utf-8&lang=en
http://www.ibm.com/support/docview.wss?rs=615&context=SSGTSD&q1=mustgather&uid=swg21254711&loc=en_US&cs=utf-8&lang=en
http://www.ibm.com/support/docview.wss?rs=615&context=SSGTSD&q1=mustgather&uid=swg21254711&loc=en_US&cs=utf-8&lang=en
http://www.ibm.com/support/docview.wss?rs=273&context=SSXJAJ&q1=mustgather&uid=swg21255056&loc=en_US&cs=utf-8&lang=en
http://www.ibm.com/support/docview.wss?rs=273&context=SSXJAJ&q1=mustgather&uid=swg21255056&loc=en_US&cs=utf-8&lang=en
http://www.ibm.com/support/docview.wss?rs=274&context=SSXJAV&q1=mustgather&uid=swg21255514&loc=en_US&cs=utf-8&lang=en
http://www.ibm.com/support/docview.wss?rs=274&context=SSXJAV&q1=mustgather&uid=swg21255514&loc=en_US&cs=utf-8&lang=en
http://www.ibm.com/support/docview.wss?rs=2231&context=SS6SG3&q1=mustgather&uid=swg21249990&loc=en_US&cs=utf-8&lang=en
http://www.ibm.com/support/docview.wss?rs=2231&context=SS6SG3&q1=mustgather&uid=swg21249990&loc=en_US&cs=utf-8&lang=en
http://www.ibm.com/support/docview.wss?rs=619&context=SSY2V3&q1=mustgather&uid=swg21260496&loc=en_US&cs=utf-8&lang=en
http://www.ibm.com/support/docview.wss?rs=619&context=SSY2V3&q1=mustgather&uid=swg21260496&loc=en_US&cs=utf-8&lang=en
http://www.ibm.com/software/support

support (general) and select ServiceLink/IBMLink to open an Electronic
Technical Response (ETR). Enter your information into the appropriate
problem submission form.

Online using the Service Request tool
The Service Request tool can be found at http://www.ibm.com/software/
support/servicerequest.

By phone
Call 1-800-IBMSERV (1-800-426-7378) in the United States or, from other
countries, go to the Contacts page of the IBM Software Support Handbook at
http://www14.software.ibm.com/webapp/set2/sas/f/handbook/
contacts.html and click the name of your geographic region.

If the problem you submit is for a software defect or for missing or inaccurate
documentation, IBM Support creates an Authorized Program Analysis Report
(APAR). The APAR describes the problem in detail. Whenever possible, IBM
Support provides a workaround that you can implement until the APAR is
resolved and a fix is delivered. IBM publishes resolved APARs on the IBM Support
website daily, so that other users who experience the same problem can benefit
from the same resolution.

After a Problem Management Record (PMR) is open, you can submit diagnostic
MustGather data to IBM using one of the following methods:
v FTP diagnostic data to IBM. For more information, refer to http://

www.ibm.com/support/docview.wss?rs=615&uid=swg21154524.
v If FTP is not possible, e-mail diagnostic data to techsupport@mainz.ibm.com.

You must add PMR xxxxx bbb ccc in the subject line of your e-mail. xxxxx is
your PMR number, bbb is your branch office, and ccc is your IBM country code.
Go to http://itcenter.mainz.de.ibm.com/ecurep/mail/subject.html for more
details.

Always update your PMR to indicate that data has been sent. You can update your
PMR online or by phone as described above.

Appendix G. Support resources and problem solving information 227

http://www.ibm.com/support/servicerequest
http://www.ibm.com/support/servicerequest
http://www14.software.ibm.com/webapp/set2/sas/f/handbook/contacts.html
http://www14.software.ibm.com/webapp/set2/sas/f/handbook/contacts.html
http://www-01.ibm.com/support/docview.wss?rs=615&uid=swg21154524
http://www-01.ibm.com/support/docview.wss?rs=615&uid=swg21154524
http://itcenter.mainz.de.ibm.com/ecurep/mail/subject.html

228 Debug Tool V13.1 Coverage Utility User's Guide and Messages

Appendix H. Accessibility

Accessibility features help a user who has a physical disability, such as restricted
mobility or limited vision, to use software products successfully. The accessibility
features in z/OS provide accessibility for Debug Tool.

The major accessibility features in z/OS enable users to:
v Use assistive technology products such as screen readers and screen magnifier

software
v Operate specific or equivalent features by using only the keyboard
v Customize display attributes such as color, contrast, and font size

The IBM System z Enterprise Development Tools & Compilers Information Center, and
its related publications, are accessibility-enabled. The accessibility features of the
information center are described at http://publib.boulder.ibm.com/infocenter/pdthelp/
v1r1/topic/com.ibm.help.doc/accessibility_info.html.

Using assistive technologies
Assistive technology products work with the user interfaces that are found in
z/OS. For specific guidance information, consult the documentation for the
assistive technology product that you use to access z/OS interfaces.

Keyboard navigation of the user interface
Users can access z/OS user interfaces by using TSO/E or ISPF. Refer to z/OS
TSO/E Primer, z/OS TSO/E User’s Guide, and z/OS ISPF User’s Guide Volume 1 for
information about accessing TSO/E and ISPF interfaces. These guides describe
how to use TSO/E and ISPF, including the use of keyboard shortcuts or function
keys (PF keys). Each guide includes the default settings for the PF keys and
explains how to modify their functions.

Accessibility of this document
Information in the following format of this document is accessible to visually
impaired individuals who use a screen reader:
v HTML format when viewed from the IBM System z Enterprise Development Tools

& Compilers Information Center

Syntax diagrams start with the word Format or the word Fragments. Each diagram
is preceded by two images. For the first image, the screen reader will say "Read
syntax diagram". The associated link leads to an accessible text diagram. When you
return to the document at the second image, the screen reader will say "Skip visual
syntax diagram" and has a link to skip around the visible diagram.

© Copyright IBM Corp. 1992, 2014 229

230 Debug Tool V13.1 Coverage Utility User's Guide and Messages

Notices

This information was developed for products and services offered in the U.S.A.
IBM might not offer the products, services, or features discussed in this document
in other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter in
this document. The furnishing of this document does not give you any license to
these patents. You can send license inquiries, in writing, to:

IBM Corporation
J46A/G4
555 Bailey Avenue
San Jose, CA 95141-1003
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan, Ltd.
3-2-12, Roppongi, Minato-ku, Tokyo 106-8711

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with the local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE.

Some states do not allow disclaimer of express or implied warranties in certain
transactions; therefore, this statement might not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

© Copyright IBM Corp. 1992, 2014 231

Copyright license
This information contains sample application programs in source language, which
illustrates programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or functions of these programs.

Programming interface information
This book is intended to help you debug application programs. This publication
documents intended Programming Interfaces that allow you to write programs to
obtain the services of Debug Tool.

Trademarks and service marks
IBM, the IBM logo, and ibm.com are trademarks of International Business
Machines Corp., registered in many jurisdictions worldwide. Other product and
service names might be trademarks of IBM or other companies. A current list of
IBM trademarks is available on the Web at “Copyright and trademark information”
at www.ibm.com/legal/copytrade.shtml.

Java™ and all Java-based trademarks and logos are trademarks of Oracle and/or its
affiliates.

Linux is a registered trademark of Linus Torvalds in the United States, other
countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

MasterCraft is a trademark of Tata Consultancy Services Ltd.

232 Debug Tool V13.1 Coverage Utility User's Guide and Messages

Glossary

This glossary defines terminology and acronyms
that are unique to this document or not
commonly known.

A

annotated listing report
An annotated listing that shows which
code statements have been executed.

APF-authorized
Authorized program facility.

B

background execution
The execution of lower-priority computer
programs when higher-priority programs
are not using the system resources.
Contrast with foreground execution.

BP See breakpoint.

breakpoint (BP)
A point in a computer program where an
instruction op code is replaced by a user
SVC instruction so that the Coverage
Utility monitor gets control from the
operating system.

breakpoint library
A library (partitioned data set) of
breakpoint data for your listings. Each
member includes the data for one listing.

BRKOUT
The ddname of the file of test case
coverage results (breakpoint output) that
is created when Coverage Utility runs and
used when Coverage Utility creates
reports.

BRKTAB
The ddname of the file of breakpoint data
(breakpoint table) that is created when
Coverage Utility is set up and used when
Coverage Utility runs.

C

code coverage
A measurement of the number of code
statements that have been executed.

compile unit (CU)
The programs that are contained within
one compiler listing.

control file
A file that contains information describing
the compile units to be analyzed.

CU See compile unit.

D

DBCS See double-byte character set.

ddname
The symbolic representation for a name
placed in the name field of a DD
statement.

double-byte character set
A set of characters in which each
character is represented by 2 bytes.
Languages such as Japanese, Chinese, and
Korean, which contain more symbols than
can be represented by 256 code points,
require double-byte character sets.
Because each character requires 2 bytes,
the typing, display, and printing of DBCS
characters requires hardware and
programs that support DBCS. Contrast
with single-byte character set.

dsname
Data set name.

E

EBCDIC
Extended binary-coded decimal
interchange code. A coded character set of
256 8-bit characters.

ECSA Extended Common System Area. A major
element of MVS/ESA virtual storage
above the 16MB line. This area contains
pageable system data areas that are
addressable by all active virtual storage
address spaces. It duplicates the common
system area (CSA) which exists below the
16MB line.

EQACUOBP
An execution monitor command that
displays the status of breakpoints.

© Copyright IBM Corp. 1992, 2014 233

EQACUOCM
The Coverage Utility program that
monitors your program while it is being
run to collect test case coverage statistics.

EQACUOID
An execution monitor command that
enables you to add a unique test case ID.

EQACUOPF
An execution monitor command that
turns the monitor performance mode off.

EQACUOPN
An execution monitor command that
turns the monitor performance mode on.

EQACUOQT
An execution monitor command that
functions like the EQACUOSP command.
However, unlike the EQACUOSP
command, EQACUOQT does not write
output to disk. Contrast with EQACUOSP.

EQACUORE
An execution monitor command that
resets all statistics in the current monitor
session to zero.

EQACUOSA
An execution monitor command that
allows you to select the session ID, listing
number, and program areas (PAs) for
which you want statistics to be displayed.

EQACUOSE
An execution monitor command that
displays a list of the current active
sessions.

EQACUOSL
An execution monitor command that
enables you to select listings for which to
display statistics.

EQACUOSN
An execution monitor command that
writes the coverage statistics (BRKOUT)
to the data set name that is specified on
the panel.

EQACUOSP
An execution monitor command that
writes current statistics to disk and
terminates the monitor session. Contrast
with EQACUOQT.

EQQCUSET
A program that analyzes the compiler
listings to determine breakpoint
placement.

EQACUZPL
A program that builds input for
EQACUZPP to insert breakpoints into
load modules.

EQACUZPP
A program that uses breakpoint data to
modify load modules by inserting
breakpoints.

EQACUZPT
A program that uses breakpoint data to
modify object modules by inserting
breakpoints.

ESQA See extended system queue area.

export The process of saving (coverage) data in a
format that can be processed by other
programs.

extended system queue area (ESQA)
An area of MVS storage that is used for
running authorized programs or for
storage allocation.

F

foreground execution
The execution of a computer program that
preempts the use of computer facilities.

I

instrument
To overlay instructions in a user program
with special instructions, known as
breakpoints, that gather test coverage
statistics about the program.

J

jcldsn JCL data set name.

L

LISTINA
The ddname of the Assembler H or High
Level Assembler listing file that is used in
setup or reports.

LISTINB
The ddname of the COBOL assembler
listing file that is used in setup or reports.

LISTINP
The ddname of the PL/I or C assembler
listing file that is used in setup or reports.

M

234 Debug Tool V13.1 Coverage Utility User's Guide and Messages

monitor
The program that measures test case
coverage during execution of your
programs.

monitor session
A distinct invocation of the monitor
program.

O

op code
Operation code. A code for representing
the operation parts of the machine
instructions of a computer.

P

PA See program area.

program area (PA)
Each specific PA contains all of the
breakpoints for one COBOL paragraph
(PROGRAM-ID for Enterprise COBOL for
z/OS Version 5); PL/I procedure,
ON-unit, or Begin-block; C function; or
assembler CSECT.

R

reentrant program
A computer program that can be entered
at any time before any prior execution of
the program has been completed.

report The Coverage Utility job that produces
the summary and annotated listing
reports after a test case run.

S

SBCS See single-byte character set.

session
A distinct invocation of the monitor
program.

session ID
The identification of your session to the
monitor program. This ID defaults to
your TSO user ID.

setup The Coverage Utility job that analyzes
your assembler listings in order to
produce a table of breakpoint data and
insert breakpoints into disk resident
programs.

single-byte character set (SBCS)
A character set in which each character is

represented by a one-byte code. Contrast
with double-byte character set.

summary report
A Coverage Utility report that gives
statistics about the coverage of all
program areas (PAs) during the test run.

supervisor call (SVC)
A request that serves as the interface into
operating system functions, such as
allocating storage. The SVC protects the
operating system from inappropriate user
entry. All operating system requests must
be handled by SVCs.

SVC See supervisor call.

U

user defaults
Default settings that affect only your
personal Coverage Utility sessions. You
can change these defaults by using the
Coverage Utility panels. Contrast with site
defaults.

X

XML (Extended Markup Language)
A data format that is designed to enable
data to be self-defining and portable
across many applications.

Glossary 235

236 Debug Tool V13.1 Coverage Utility User's Guide and Messages

Bibliography

Debug tool publications
Using CODE/370 wih VS COBOL II and OS PL/I, SC09-1862

Debug Tool for z/OS

You can access Debug Tool publications through the IBM System z Enterprise
Development Tool and Compliers information center. You can receive RSS feeds
about updates to the information center by following the instructions in the topic
"Subscribe to information center updates", which is in the IBM System z Enterprise
Development Tools and Compilers information center.

Debug Tool User's Guide, SC14-7600
Debug Tool Coverage Utility User's Guide and Messages, SC27-4651
Debug Tool Reference and Messages, SC27-4652
Debug Tool Reference Summary, SC14-7602
Debug Tool API User's Guide and Reference, SC27-4654
Debug Tool Customization Guide, SC14-7601
Debug Tool Program Directory, GI13-3004
COBOL and CICS Command Level Conversion Aid for OS/390 & MVS & VM:
User's Guide, SC26-9400-02
Program Directory for IBM COBOL and CICS Command Level Conversion Aid for
OS/390 & MVS & VM, GI10-5080-04
Japanese Program Directory for IBM COBOL and CICS Command Level Conversion
Aid for OS/390 & MVS & VM, GI10-6976-02
Problem Determination Tools Common Component Program Directory, GI10-8969
Problem Determination Tools for z/OS Common Component Customization Guide and
User Guide, SC19-4159

High level language publications
OS/390 C/C++

Compiler and Run-Time Migration Guide, SC09-2359
Curses, SC28-1907
Language Reference, SC09-2360
Programming Guide, SC09-2362
Reference Summary, SX09-1313
Run-Time Library Reference,SC28-1663
User's Guide, SC09-2361

Enterprise COBOL for z/OS, Version 5
Customization Guide, SC14-7380
Language Reference, SC14-7381
Programming Guide, SC14-7382
Migration Guide, GC14-7383
Program directory, GI11-9180

© Copyright IBM Corp. 1992, 2014 237

Licensed Program Specifications, GI11-9181

Enterprise COBOL for z/OS, Version 4
Compiler and Runtime Migration Guide, GC23-8527
Customization Guide, SC23-8526
Licensed Program Specifications, GI11-7871
Language Reference, SC23-8528
Programming Guide, SC23-8529

Enterprise COBOL for z/OS and OS/390, Version 3
Migration Guide, GC27-1409
Customization, GC27-1410
Licensed Program Specifications, GC27-1411
Language Reference, SC27-1408
Programming Guide, SC27-1412

COBOL for OS/390 & VM
Compiler and Run-Time Migration Guide, GC26-4764
Customization under OS/390, GC26-9045
Language Reference, SC26-9046
Programming Guide, SC26-9049

Enterprise PL/I for z/OS, Version 4
Language Reference, SC14-7285
Licensed Program Specifications, GC14-7283
Messages and Codes, GC14-7286
Compiler and Run-Time Migration Guide, GC14-7284
Programming Guide, GI11-9145

Enterprise PL/I for z/OS and OS/390, Version 3
Diagnosis, SC27-1459
Language Reference, SC27-1460
Licensed Program Specifications, GC27-1456
Messages and Codes, SC27-1461
Migration Guide, GC27-1458
Programming Guide, SC27-1457

VisualAge PL/I for OS/390
Compiler and Run-Time Migration Guide, SC26-9474
Diagnosis Guide, SC26-9475
Language Reference, SC26-9476
Licensed Program Specifications, GC26-9471
Messages and Codes, SC26-9478
Programming Guide, SC26-9473

PL/I for MVS & PM
Compile-Time Messages and Codes, SC26-3229
Compiler and Run-Time Migration Guide, SC26-3118

238 Debug Tool V13.1 Coverage Utility User's Guide and Messages

Diagnosis Guide, SC26-3149
Installation and Customization under MVS, SC26-3119
Language Reference, SC26-3114
Licensed Program Specifications, GC26-3116
Programming Guide, SC26-3113
Reference summary, SX26-3821

Related publications
CICS

Application Programming Guide, SC34-6231
Application Programming Primer, SC34-0674
Application Programming Reference, SC34-6232

DB2 Universal Database™ for z/OS
Administration Guide, SC18-7413
Application Programming and SQL Guide, SC18-7415
Command Reference, SC18-7416
Data Sharing: Planning and Administration, SC18-7417
Installation Guide, GC18-7418
Messages and Codes, GC18-7422
Reference for Remote RDRA* Requesters and Servers, SC18-7424
Release Planning Guide, SC18-7425
SQL Reference, SC18-7426
Utility Guide and Reference, SC18-7427

IMS
IMS Application Programming: Database Manager, SC27-1286
IMS Application Programming: EXEC DLI Commands for CICS & IMS, SC27-1288
IMS Application Programming: Transaction Manager, SC27-1289

TSO/E
Command Reference, SA22-7782
Programming Guide, SA22-7788
System Programming Command Reference, SA22-7793
User's Guide, SA22-7794

z/OS
MVS JCL Reference, SA22-7597
MVS JCL User's Guide, SA22-7598
MVS System commands, SA22-7627

z/OS Language Environment
Concepts Guide, SA22-7567
Customization, SA22-7564
Debugging Guide, GA22-7560
Programming Guide, SA22-7561
Programming Reference, SA22-7562

Bibliography 239

Run-Time Migration Guide, GA22-7565
Vendor Interfaces, SA22-7568
Writing Interlanguage Communication Applications, SA22-7563

Softcopy publications
Online publications are distributed on CD-ROMs and can be ordered through your
IBM representative. Debug Tool User's Guide, Debug Tool Customization Guide, and
Debug Tool Reference and Messages are distributed on the following collection kit:

SK5T-8871

Online publications can also be downloaded from the IBM website. Visit the IBM
website for each product to find online publications for that product.

240 Debug Tool V13.1 Coverage Utility User's Guide and Messages

Index

A
ABEND codes 161
annotated listing report

C/C++ 29
creating JCL for 30
creating specific 121
displaying execution counts 124
frequency count mode 124
PL/I 29
reducing size 122

annotation symbols
annotated listing report 29, 121
changes with performance mode 123

assembler samples 42
authorized data sets 161

B
branch, conditional

breakpoints 85, 92
coverage 5, 109
coverage statistics 111
instruction 85, 121

breakpoints
definition 4
displaying status 82
errors executing 161
purpose 5

BRKOUT
definition 5
specifying data set name 96

BRKTAB
creating 58
definition 5

C
C/C++

annotated listing report 29
listing DCB attributes 66
program identification 109
statements 53
summary report 21, 113, 114

CL/C++ samples 42
COBOL samples 40
code motion optimization 131
coder, definition 155
combine

edit screen 159
JCL, creating 158
panel 158

command
syntax diagrams viii

commands
issuing 81
monitor 82
parameters 81, 98

compiler options 61
compilers supported 6

conditional branch
breakpoints 85, 92
coverage 5
coverage suppression 117
instruction

annotated listing report 121
fields 85
symbols 29

conditional branch coverage
overhead 78
poor performance when

measuring 163
suppressing with performance

mode 117
control file

load module example 56
coverage

conditional branch, measuring 163
overhead 78
suppressing conditional branch 117

Coverage Utility information
commands

EQACUOBP 82
EQACUOID 85
EQACUOPF 86
EQACUOPN 87
EQACUOQT 88
EQACUORE 89
EQACUOSA 90
EQACUOSE 92
EQACUOSL 94
EQACUOSN 96
EQACUOSP 97
issuing commands 81

monitor
commands 81, 98
execution 73, 79
problems 161

setup 57, 69
CPP statement 53
customer support 224
customizing Coverage Utility 9

D
data set attributes 191
date format, specifying 206
DBCS support 193
dead code elimination optimization 131
defaults file, creating and modifying 9
defaults, modifying 9
defaults, user 9
diagnosing problems

047 system abend 161
7C1 system abend in user

program 161
conditional branch coverage, poor

performance 163
ECSA storage depleted 163

documents, licensed vii

E
ECSA storage depleted 163
ECSA usage 189
English, specifying 208
English, specifying uppercase 208
ENU 208
EQACUOBP 82
EQACUOID 85
EQACUOPF 86
EQACUOPN 87
EQACUOQT 88
EQACUORE 89
EQACUOSA 90
EQACUOSE 92
EQACUOSL 94
EQACUOSN 96
EQACUOSP 97
EQACUSET 67
EQACUZPL parameters 69
EQACUZPP parameters 69
EQACUZPT parameters 69
EQASTART 9

parameters 205
ESQA usage 189
execution

Coverage Utility overview 5
monitor 73
multiple user sessions 76
summarized 5

exported data 209
exporting data

in XML format 107
parameters 136

F
FastPath

overview 195
quick start

JCL 195
parameters 197

quick stop
JCL 202
parameters 203

snapshot summary JCL 200
fixes, getting 223
frequency count mode 124

I
IBM Support Assistant, searching for

problem resolution 221
information centers, searching for

problem resolution 221
inlined code

in annotated report 123
in summary report 64
setting default 12

inlining 133

© Copyright IBM Corp. 1992, 2014 241

Internet
searching for problem resolution 221

introducing
Debug Tool Coverage Utility

(Coverage Utility) 3

J
Japanese, specifying 208
JCL

Coverage Utility
creating combine 158
creating report 103
for assembler examples 21
for C/C++ examples 21
for COBOL examples 31
for PL/I examples 21

setup
creating monitor 73
creating setup 60
creating setup for compile job

stream 66
JPN 208

K
knowledge bases, searching for problem

resolution 221
KOR 208
Korean, specifying 208

L
language, specifying national 208
languages, supported 3
licensed documents vii
LINECOUNT parameter 206
listing report, annotated

example
assembler 35, 121
C/C++ 34
COBOL 31, 121
PL/I 33, 121

producing 29
load modules, instrumenting 59
LOCALE parameter 206

M
module, definition 155
monitor program

commands 81
Coverage Utility 5
ESQA, CSA, and ECSA usage 189
execution 73
problems, diagnosing 161

multiple user sessions 73

N
national language, specifying 208
NATLANG parameter 208
numeric format, specifying 206

O
object modules, instrumenting 59
operating systems supported 6
optimization techniques

code motion 131
dead code elimination 131
procedure inlining 132
statement decomposition 132

optimized code 64, 131
options, compiler 61
overhead 78
overview, Coverage Utility 3

P
page size 206
panel interface 3
panels

Debug Tool Coverage Utility panel 9
Defaults 10
Manipulate Defaults 10
Reset Defaults to Site Defaults 13

parameters, common
definition 205
EQACUOBP 84
EQACUOPF 87
EQACUOPN 88
EQACUOQT 89
EQACUORE 90
EQACUOSA 91
EQACUOSE 93
EQACUOSL 95
EQACUOSN 97
EQACUOSP 98
EQACUSET 68
EQACUZPL 69
EQACUZPP 69
EQACUZPT 69
export program 137
monitor 75
overview 9
report program 136
summary program 135

performance mode
changes in annotation symbols 123
reducing monitor overhead 78
suppressing conditional branch

coverage 117
PL/I samples 41
problem determination

describing problems 226
determining business impact 225
submitting problems 226

problem diagnosis
047 system abend 161
7C1 system abend in user

program 161
conditional branch coverage, poor

performance 163
ECSA storage depleted 163

procedure inlining optimization 132
program area

data 110
definition 17
displaying statistics for 90

project environments 155

R
report program parameters 135
reports

annotated listing report 121
from specific listings 121
printing 122
process overview 5
processing optimized code 131
requirements for running reports 5
summary for assembler 109
summary report 109

requirements, Coverage Utility 189, 193
resources required 189
results

combining 157, 160
rules used 160

S
sample

Coverage Utility 17
summary of test case coverage 22

samples
assembler 42
assembler summary 28
C/C++ 42
C/C++ summary 27
COBOL 40
COBOL summary 24, 25
compiling 20
control file 21
data sets 19
link & run JCL 24
monitor JCL 23
PL/I 41
PL/I summary 26
producing summary 22
report 19
running 17
running annotated JCL 30
running summary JCL 24
setup JCL 22
summary report JCL 23
using 17

sessions
definition 76
determining active sessions 92
multiple 76

setup
creating JCL using the panels 60
for summary and listings 57
JCL for the compile job stream 66
overview 4
parameters

ATOGZAPL 69
EQACUSET 67
EQACUZPP 69
EQACUZPT 69
overview 66

requirements for setup 4
summarized 4
when to create or submit JCL 61

setup program
parameters 66
resources required 189

242 Debug Tool V13.1 Coverage Utility User's Guide and Messages

Software Support
contacting 224
describing problems 226
determining business impact 225
receiving updates 223
submitting problems 226

starting Coverage Utility 9
statement decomposition 132
statistics, resetting 89
stopping the monitor 97
summary program

parameters 135
resources required 190

summary test case coverage
assembler

COBOL 22
sample 42
setup 4
summary 21

C/C++ 21
COBOL

create JCL to start a monitor
session 23

create setup JCL 22
create summary JCL 23
edit JCL to link the modified object

modules 24
edit JCL to run the GO step 24
editing the control file 21
run the JCL 24

PL/I 21
supervisor call (SVC)

definition 235
problems, diagnosing 161
used as breakpoints 73

SVC
definition 235
problems, diagnosing 161
used as breakpoints 73

symbols, annotation
annotated listing report 29, 121
changes with performance mode 123

syntax
ASM 54
C 53
COBOL 49
DEFAULTS 48
examples 56
INCLUDE 48
PL/I 51

syntax diagrams
how to read viii

system ABEND codes 161
system considerations 6

T
terminating Coverage Utility

EQACUOQT command 88
EQACUOSP command 97

test cases
combining results 157
individual, measuring coverage 160
rules used 157
specifying ID 85

tester, definition 155
time format, specifying 206

timeout, monitor 89

U
UEN 208
unexecuted 111
user data sets for samples 39
user defaults

editing 10
panel 10
resetting 13

user SVCs 5

X
XML

exporting data in 107
file format 209
format data 209

Index 243

244 Debug Tool V13.1 Coverage Utility User's Guide and Messages

����

Product Number: 5655-Q10

Printed in USA

SC27-4651-03

	Contents
	About this document
	Who might use this document
	Accessing z/OS licensed documents on the Internet
	How this document is organized
	How to read syntax diagrams
	Symbols
	Syntax items
	Syntax examples

	How to send your comments

	Summary of changes
	Part 1. Overview of Debug Tool Coverage Utility
	Chapter 1. Introduction to Debug Tool Coverage Utility
	Monitoring coverage: an overview
	Setup
	Execution
	Report

	Supported compilers and assemblers
	Requirements
	Where you can find more information

	Chapter 2. Getting started
	Starting the Coverage Utility ISPF dialog
	Modifying your Coverage Utility defaults
	Editing your user defaults
	Resetting your user defaults to the site defaults

	Part 2. Learning to use Coverage Utility
	Chapter 3. Learning to use the product
	Using the supplied samples
	Running the samples
	Allocating sample data sets

	Preparing to produce a sample report
	Compiling the sample
	Editing the sample control file
	Producing a sample summary
	Creating sample setup JCL
	Creating sample JCL to start a monitor session

	Creating JCL for a sample summary report
	Editing sample JCL to link and run
	Running the summary sample JCL
	Example: Summary report for COB01
	Example: Summary report for COB01 (Enterprise COBOL for z/OS Version 5)
	Example: Summary report for PLI01
	Example: Summary report for C01
	Example: Summary report for ASM01
	Producing a sample annotated listing report
	Creating JCL for an annotated listing report
	Running the annotated sample JCL
	Example: COBOL annotated listing report
	Example: PL/I annotated listing report
	Example: C/C++ annotated listing report
	Example: Assembler annotated listing report

	Chapter 4. Samples that are provided with Coverage Utility
	User data sets that are required to run the samples
	COBOL samples
	PL/I samples
	C/C++ samples
	Assembler samples

	Part 3. Preparing to monitor a program
	Chapter 5. Describing the compile units to be analyzed
	Editing a control file
	Contents of the control file
	Syntax of control file statements
	INCLUDE statement
	DEFAULTS statement
	COBOL statement (compilation unit definition)
	PL/I statement (compilation unit definition)
	C statement (compilation unit definition)
	ASM statement (compilation unit definition)

	Examples: Control files
	Example: Control file for a single compilation unit
	Example: Control file for multiple compilation units
	Example: Control file for load module

	Chapter 6. Preparing to monitor a program
	Supplying setup input
	Setup processing
	Restrictions on setup input

	Instrumenting object modules or load modules
	Creating the setup JCL by using the panels
	Determining when to create or submit setup JCL
	Compiler options required by Coverage Utility
	COBOL compiler options required by Coverage Utility
	PL/I compiler options required by Coverage Utility
	C/C++ compiler options required by Coverage Utility
	Assembler options required by Coverage Utility

	Compiler restrictions imposed by Coverage Utility
	COBOL compiler restrictions imposed by Coverage Utility
	PL/I compiler restrictions imposed by Coverage Utility
	C/C++ compiler restrictions imposed by Coverage Utility
	Assembler restrictions imposed by Coverage Utility

	Setup JCL for the compile job stream
	Parameters for the setup programs
	EQACUSET
	EQACUZPT
	EQACUZPL
	EQACUZPP

	Part 4. Running a Coverage Utility monitor session
	Chapter 7. Monitoring a program
	Creating the start monitor JCL by using the panels
	Parameters for the monitor
	Running multiple user sessions
	Changing and using IDs
	Coverage of common modules with multiple user sessions
	Example: Multiple testers running modules with unique modules per session
	Example: Multiple testers running with modules monitored in multiple sessions
	Example: Multiple testers running a module, each with a unique copy

	Using performance mode to reduce monitor overhead
	Monitoring a program that is executing under control of the Debug Tool debugger
	Restrictions on monitoring programs
	Restrictions on programs that reside in read-only storage
	Restrictions on system modes

	Chapter 8. Monitor commands
	Issuing commands
	EQACUOBP (Display breakpoint status)
	EQACUOID (Add ID)
	EQACUOPF (Performance mode off)
	EQACUOPN (Performance mode on)
	EQACUOQT (Quit)
	EQACUORE (Reset)
	EQACUOSA (Display statistics)
	EQACUOSE (Display sessions)
	EQACUOSL (Display listings)
	EQACUOSN (Snapshot)
	EQACUOSP (Stop)

	Part 5. Obtaining Coverage Utility reports
	Chapter 9. Creating reports
	Creating summary report JCL by using the panels
	Creating annotated listing report JCL by using the panels
	Creating export JCL by using the panels

	Chapter 10. Summary report
	Sections of the summary report
	PROGRAM AREA DATA section
	UNEXECUTED CODE section
	BRANCHES THAT HAVE NOT GONE BOTH WAYS section

	Example: COBOL summary report
	Example: COBOL summary report (Enterprise COBOL for z/OS Version 5)
	Example: PL/I summary report
	Example: C summary report
	Example: Assembler summary report
	Suppression of conditional branch coverage with performance mode
	Example: Summary report with performance mode enabled during setup

	Chapter 11. Annotated listing report
	Selecting specific listings to annotate
	Reducing the size of an annotated listing report
	Changes in annotation symbols with performance mode
	Displaying execution counts in an annotated listing report
	Example: COBOL annotated listing report
	Example: PL/I annotated listing report
	Example: C annotated listing report
	Example: Assembler annotated listing report

	Chapter 12. Report differences for optimized C/C++ code
	The effects of code motion
	The effects of dead code elimination
	The effects of statement decomposition
	The effects of inlining
	Summary report with inline code
	Annotated listing report with inline code

	Chapter 13. Report program parameters
	Parameters for the summary and report programs
	Summary program parameters
	Report program parameters

	Parameters for the export data program

	Chapter 14. HTML reports
	HTML Annotated Listing Report
	Creating an HTML Annotated Listing Report by using the panel interface
	Creating an HTML Annotated Listing Report by using the command interface
	Restrictions on creating an HTML Annotated Listing Report
	Format of the HTML Annotated Listing Report
	Example HTML Annotated Listing Report

	HTML Targeted Coverage Report
	Specifying the COBOL Program-ID
	For the panel interface
	For the command interface

	Creating an HTML Targeted Coverage Report by using the panel interface
	Creating an HTML Targeted Coverage Report by using the panel interface, Program-ID selection
	Creating an HTML Targeted Coverage Report by using the command interface
	Restrictions on creating an HTML Targeted Coverage Report
	Format of the HTML Targeted Coverage Report
	Example Targeted Coverage Report

	Part 6. Dealing with special situations
	Chapter 15. Using Coverage Utility in a project environment
	Creating Coverage Utility files during code development
	For the coder
	For the tester

	Combining test case coverage results
	Creating the combine JCL by using the panels
	Rules for combining results

	Measuring coverage for individual test cases

	Chapter 16. Diagnosing monitor problems
	Solving system 047 abend
	Solving system 7C1 abend in a user program
	Solving protection exception 0C4 (reason code 4) in a user program
	Solving system 0F8 abend in a user program
	Solving system Fnn abend in a user program
	Solving lack of ECSA space
	Solving poor performance when measuring conditional branch coverage

	Part 7. Appendixes
	Appendix A. Messages
	Appendix B. Resources and requirements
	Coverage Utility resources
	Setup resources
	Monitor CSA, ESQA, and ECSA usage
	Report programs

	Coverage Utility requirements
	DDNAME requirements
	Data set attributes

	Appendix C. DBCS support
	DBCS requirements for Coverage Utility compilers and assemblers
	DBCS support with Coverage Utility

	Appendix D. FastPath
	Creating quick start JCL from the panels
	Quick start parameters

	Creating snapshot summary JCL from the panels
	Creating quick stop JCL from the panels
	Quick stop parameters

	Appendix E. Parameters that are common to multiple routines
	LINECOUNT
	LOCALE
	NATLANG
	Example: Common parameters

	Appendix F. Exported XML data
	XML file description
	Statement or line numbers
	Execution of statements with breakpoints
	XML output for in-lined routines
	Optional sections

	XML DTD
	Example: Exported XML file

	Appendix G. Support resources and problem solving information
	Searching knowledge bases
	Searching the information center
	Searching product support documents

	Getting fixes
	Subscribing to support updates
	RSS feeds and social media subscriptions
	My Notifications

	Contacting IBM Support
	Define the problem and determine the severity of the problem
	Gather diagnostic information
	Submit the problem to IBM Support

	Appendix H. Accessibility
	Using assistive technologies
	Keyboard navigation of the user interface
	Accessibility of this document

	Notices
	Copyright license
	Programming interface information
	Trademarks and service marks

	Glossary
	Bibliography
	Debug tool publications
	High level language publications
	Related publications
	Softcopy publications

	Index
	A
	B
	C
	D
	E
	F
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	X

